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Abstract

Recently, logics which can be used to reason about the knowledge state of agents in a distributed sys-
tem in which quantum computation is performed have been developed. In this report, the three main
approaches are surveyed and analysed. These logics are applied to perform verification of epistemic
properties of the Quantum Teleportation protocol. The most well-developed approach is found to be
one based on the Distributed Measurement-Based Computation semantics for quantum computation.
We discuss how epistemic verification fits in to the wider context of quantum algorithm verification
and how epistemic properties may be added to existing verification tools. Starting points for further
research in this area are discussed.
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Chapter 1

Introduction

The security of classical cryptography relies on the assumption that factoring large numbers is an in-
tractable problem [43]. With the development of Peter Shor’s polynomial-time quantum algorithm for
integer factorisation [50], this assumption no longer holds. Although it seems that reliable physical im-
plementations of quantum algorithms will not be developed for some time in the future, it is important
to develop cryptographic algorithms which do not reply on this assumption.

Quantum algorithms for key distribution (QKD) which do not require this assumption to hold have
been proposed. These include the BB84 protocol [9], and the Ben92 protocol [10]. The BB84 protocol has
been theoretically proven to be “unconditionally secure”[41] - that it is secure against all conceivable
attacks. However, a theoretical proof of security does not take practical implementation issues into
consideration. As a result, practical implementations of Quantum Key Distribution may be open to
attacks which are not possible against the theoretical model [30]. In order to ensure security of practical
implementations of QKD protocols (and other quantum protocols), verification of models of practical
implementations must be performed.

Several different techniques for protocol verification exist. This report focuses on an epistemic ap-
proach to verification, which considers the knowledge states of agents in a distributed multi-agent
system (see Chapter 5 for a brief discussion of other techniques). The epistemic approach has been
used in the verification of classical communication and security protocols since the first application was
presented in [31].

1.1 Knowledge in Quantum Systems

There are fundamental differences between classical and quantum computation (see Section 2.2 for a
brief overview of quantum computation). Existing epistemic logics are only equipped to deal with
the classical case. As a result, it is difficult to apply these logics to perform verification of quantum
protocols. It may be argued that there is a need to develop a new epistemic logic, a quantum epistemic
logic. However, in developing a logic there are several questions which must be addressed, including:

e How should knowledge be defined?
e Should agents be regarded as knowing the state of arbitrary qubits in their possession?

o How can the set of quantum states be restricted to a finite set of states about which we may reason?

Three approaches to modelling knowledge in quantum systems have been presented in the literature
in recent years. Each of these approaches will be described and analysed, in order to determine their
strengths and weaknesses with regard to modelling the knowledge of agents in quantum systems. Each
approach has also been applied to verify epistemic properties of the Quantum Teleportation protocol
[11], in order to strengthen the analysis and demonstrate the characteristics of each approach.



1.2 Structure

A brief description of epistemic logic, quantum computation and quantum logic is given in Chapter 2 to
familiarise the reader with these concepts. The three approaches are discussed in Chapter 3, and their
application to verification of the Quantum Teleportation protocol is presented in Chapter 4. Related
approaches to verification are discussed in Chapter 5. Conclusions and a brief summary of starting
points for further work are given in Chapter 6.



Chapter 2

Background

2.1 Epistemic Logic

Epistemic logic [23] may be used for reasoning about the knowledge of agents in a distributed multi-
agent system, and was originally proposed in [33]. The logic is based on a possible-worlds notion of
knowledge - an agent considers that several possible global states may exist based on its local state. A
global state consists of the local states of all the agents in the system. An agent knows that a statement is
true if the statement is true in all of the worlds it considers possible.

Epistemic logics are a type of modal logic [14]. The frame over which the logics are evaluated
consists of all of the possible global states of the system. An accessibility relation ~; over the worlds is
defined for each agent i in the system. Two worlds are related by ~; if the local state of agent i is equal
in both of the worlds. Therefore, global states which the agent i cannot distinguish are related by ~;. An
interpretation (or valuation) defined over the frame gives the truth value of propositions at each global
state. At a global state s of a frame F, the formula ¢ is evaluated based on the interpretation function
s

F,s = ¢iff (s, ¢) = true

To formally describe the knowledge of agents, the modality K; is introduced for each agent i. The
statement K;¢ (Agent i knows ¢) has the following semantics:

F,s EKpiffVs' ~;s: F,s' ¢

Since the accessibility relation of the epistemic modality is an equivalence relation, the modality
satisfies the axioms of the system S5. These axioms are:

Kip —p (Truth)
K;p —KiK;p (Positive Introspection)
-Kijp —=K;—=K;p (Negative Introspection)

The consequence of the Truth axiom is that agents only know things which are true. The conse-
quence of the Positive Introspection axiom is that if an agent knows a fact, it knows that it knows that
fact. Finally, the consequence of Negative Introspection is that if an agent doesn’t know a fact, it knows
that it does not know that fact.

2.2 Quantum Computation
Quantum computation [46] is performed on the quantum analogue of bits, which are quantum bits, or

qubits. A qubit is a state in a two dimensional Hilbert space. The basis for this space is regarded as a
computational basis. Often the standard basis is used, which consists of the vectors
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An alternative basis which is sometimes used is the Bell basis:

H=20) =54 @2)

However, any basis may potentially be used as a computational basis. In general, qubits are of the
form

) = a|0) + B|1)  where |af> + |B]* =1 (2.3)

This means that the state of a qubit is a unit vector in two-dimensional Hilbert space. The state |¢)
referred to as a superposition of the basis vectors. It is in both the state |0) and |1) simultaneously, until
it is measured. When a qubit in the state «|0) + B|1) is measured in the basis {|0),|1) }, the outcome of
the measurement will be either |0) with probability |«|?, or |1) with probability |B|?. Also, the effect of
the measurement is to “collapse” the state of the measured qubit to the state |0) or |1). In other words,
when a qubit is measured, the system “decides” whether it is in the state |0) or |1) and collapses to that
state.

2.2.1 Multiple Qubits

The state of a system of multiple qubits is the tensor product of the state vectors of the individual qubits
which they consist of. For example, the state of a two qubit system made up of qubits q; and g5 is given

by 41 ® g».

2.2.2 Quantum Gates

A Quantum Gate may be applied to a qubit (or qubits) which transforms its state in some defined way.
All quantum gates may be represented by unitary matrices. The result of applying a quantum gate G to
a qubit |¢) is computed by multiplying the matrix representation of the gate by the state vector of the
qubit. The four quantum gates which are used in the protocol considered in this report are as follows:

1000
0 1 1 0 1 /1 1 0100
X_<1 0> Z‘(o —1> H_\/§<1 —1) CNOT=10 0 0 1

The X, Z, and H (Hadamard) gates all operate on a single qubit. The CNOT gate operates on two
qubits. To calculate the result of applying the CNOT gate to two qubits, the matrix representation of
the gate is multiplied by the tensor product of the state vectors of the qubits.

2.2.3 Entanglement

Two qubits may be put in to an entangled state by application of the H gate to the first qubit and a
subsequent application of the CNOT gate to both qubits. The resulting state is a vector which cannot
be written as the tensor product of two separate qubits. In this case, neither qubit is in a well-defined
local state. The effect of entanglement is that operations on the first qubit have a deterministic effect on
the second qubit, and vice-versa. This non-local effect occurs even if the entangled pair of qubits are
spatially separated. Quantum protocols which exploit this non-local behaviour include the Quantum
Teleportation and Quantum Key Distribution protocols.

There are four entangled states which may be generated from input qubits |x) and |y), and these
states are written in shorthand as B.,:

e When x = y = 0, the output of the entanglement operation is (|0) ® |0)) + (|1) ® |1)), the state
Boo-



e When x = 0 and y = 1, the output of the entanglement operation is (|0) ® |1)) + (|]1) ® |0)), the
state Bo;.

e When x = 1 and y = 0, the output of the entanglement operation is (|0) ® |0)) — (|]1) ® |1)), the
state B1p.

e When x = y = 1, the output of the entanglement operation is (|0) ® |1)) + (|1) ® |0)), the state
Bt

2.24 Quantum Circuits

A convenient notation for representing sequences of actions performed over multiple qubits is the quan-
tum circuit notation. In a quantum circuit, the state vectors of the input qubits are shown to the left of
the circuit. These qubits are then operated on by a sequence of operations moving from left to right
across the circuit. The state vectors of the output qubits may be shown on the right.

An example of a quantum circuit which entangles two qubits is shown in Figure 2.1. The two input
qubits in this case are both initially |0). The output qubits are |B},) and |B3,), which are the first and
second qubits respectively of an entangled pair in the state |Boo)-

0) —{H}—p— [Bao)
10) B30

Figure 2.1: A quantum circuit for entangling two qubits.

2.2.5 Quantum Logic

Quantum logic is a logical system for reasoning about properties of quantum mechanical systems (see
[13, 24] for more information). Essentially the logic has similarities to propositional logic, but the dis-
tributive law is excluded. The consequence of this is that the deduction theorem also fails for quantum
logic.

It should be noted that the currently accepted view of quantum logic has little relation to quantum
computing, although recently there have been attempts to bring together the two, including [42], and
the Dynamic Epistemic Quantum Logic approach described in Section 3.4.



Chapter 3

Modelling Knowledge in Quantum
Systems

3.1 Introduction

There are two approaches to modelling knowledge in multi-agent systems which perform quantum
computation. A logical approach to proving correctness of quantum programs which enables reason-
ing about epistemic properties of quantum systems has recently been developed. In this chapter, we
describe and analyse these three approaches. We conclude with a short comparison.

3.2 Qubit Message Passing Environments

The first attempt to define a semantics for representing the knowledge states of agents which perform
quantum computation was put forward in [51]. The system of logic presented defines modalities for
two types of knowledge: classical knowledge, which represents the knowledge available to an agent based
upon their classical state only, and quantum knowledge, which represents the knowledge of an agent
based upon the state vectors of qubits in their possession as well as their classical state. A description
of the environments and the logic follows.

3.2.1 Environments

An environment is a system made up of a set of agents and a set of qubits. In the following definitions,
it is assumed that the environment consists of N qubits and n agents. Each agent may be in possession
of some of the qubits - however, each qubit is possessed by one agent at a time.

There is a classical communications channel between every pair of agents, and also from each agent
to itself. This channel allows classical messages to be transmitted between any two agents reliably.
Agents are also interconnected by quantum channels, which allow qubits to be transmitted from one
agent to another. If a quantum system is implemented using photons as qubits, quantum channels may
be physically realised by fibre optic cables [46].

3.2.2 The State of Environments

Four elements make up the classical state of an environment:

Variables. Each agent has a set of classical variables in which Boolean values are stored. Var; is a set of
variable names for each agent i. A function var is the assignment of a truth value to the variables
of agent 7, defined as var(i) : Var; — {0,1}.

Qubit Locations. Each agent is aware of which qubits are in its possession. The injective function
loc : [0, N] — [0,7n] is a mapping from qubits to agents. Intuitively this tells us which agent is in
possession of a particular qubit. Conversely, loc ! tells us which qubits an agent possesses.



Classical Messages. Agents can send messages to each other on reliable classical channels. A set of
messages, Msg is defined. This set also contains the value L, which represents an empty mes-
sage. The mapping chan : [1...7n]2 — Msg between classical channels and messages is defined.
Intuitively, chan(i, j) = m means that agent 7 has just sent the message m to agent j.

Quantum Measurement Results. When an agent performs a measurement on one (or more) of its
qubits, the outcome of the measurement is stored as parts of its classical state. The set res(i) =
(Mi, m;) records a set of measurements, M, and their outcomes, m, which agent i has made. In the
initial state, res(i) = @ for all agents since no measurements have been made. As measurements
are made, each new measurement result is added to the set.

The classical state of an environment, s¢, is a tuple made up of these four elements:

s¢ = (var, loc, chan, res)

The quantum state of an environment, s7 is simply a unit vector in Q. This vector is the tensor
product of the state of all the qubits in the system. A global state s is a tuple made up of the classical
and quantum state of the environment: s = (s7, s°).

An interpretation function is defined over the set S, which contains all possible states of a given
Qubit Message Passing Environment. The set Prop is a set of propositional atoms. The interpretation
function is then defined by 7 : S x Prop — {0,1}. Since quantum states which differ by a global
phase factor z € C where |z| = 1 are considered identical, the interpretation of Qubit Message Passing
Environments whose state only differs by a global phase in the quantum states must be identical.

3.2.3 Actions

Agents are able to perform actions which affect the global state of the environment. These are:

Variable assignment. Agents may assign a Boolean value to one of their classical variables. The state-
ment v := b represents the assighment of the Boolean value b to the variable v where v € Var;, b €

{0,1}.

Random Variable Assignment. Agents may also assign a random Boolean value to one of their classi-
cal variables. The action £1ip(v) assigns a random value to the variable v where v € Var;.

Qubit transmission. An agent may use the quantum channel to transmit one of the qubits in its pos-
session to another agent. This is represented by the statement transmit(b,j) where b € 1loc™!(i).
The effect on the environment of this action is to change loc(b) to equal j.

Classical Message Transmission. An agent may send a classical message using the classical channel to
another agent, which is achieved by performing the action send; j(m). The effect of this is to set
chan(i,j) = min the next state. Additionally, Vk : k # j, chan(i, k) = L. Intuitively, this means
that an agent may send a classical message to one agent at once.

Qubit Measurement. An agent may also perform a measurement on one or more of its qubits. The
effect of the measurement is to collapse the states of the measured qubits to one of the vectors of
the basis in which they are measured. The tuple (M, m) made up of the measurement, M, and its
outcome m is added to the set res(i).

3.2.4 Runs, Points, and Protocols

Runs. A run,r : N — S maps the natural numbers on to the set of global states. This can be thought
of as specifying the temporal evolution of an environment, as successive natural numbers map to
successive states of the system.

Points. A point on a run, r(m) is the global state of the system at a particular time m.



Protocols. A pattern of behaviour exhibited by an agent in the environment is characterised by its
protocol, which describes what action an agent will take based upon its observations. An obser-
vation O; represents the information which an agent has just acquired. A protocol for an agent i
is formally defined as P : O;" — Act;. This means that an agent’s choice of action may depend
upon a sequence of observations. This also indicates that agents have perfect recall of their past
observations.

Joint Protocols. A joint protocol is a tuple P = (Py,...,P,), where each P; is a protocol for agent i.
R(&,P) is the set of all runs of the joint protocol P in the environment £.

3.2.5 The Logic: Syntax and Semantics

Formulae ¢ are generated by following grammar, where p is a propositional atom:

pu=ple|-¢|¢AP|K¢|Klp|D¢|init(p)

Disjunction and implication may be defined in the familiar way. The modal operators and the init
operator may be read as:

e Ki¢: Agenti classically knows ¢
. K?q): Agent i quantumly knows ¢
e O¢: At all future times, ¢

e init(¢): Initially, ¢

Two equivalence relations over points are defined, ~§ and N?, which are referred to as classical
equivalence and quantum equivalence respectively. Points in which the local classical state of an agent
i are equal are related by the relation ~¢. Points in which both the local classical and quantum states of
an agent i are equal are related by N?. From these definitions, we can see that what is classically known
by an agent is a subset of that which is quantumly known by an agent.

Formulae are evaluated with respect to an environment, £, a joint protocol, P, and a point on a run
(r,m), where r € R(&, P). The full semantics are defined as follows:

1. £,P,(r,m) = pif m(r(m),p) =1 when p € Prop

2. E,P,(r,m) = KS¢pif E,P,(r',m") |= ¢ for all points (r',m") of R(E,P) such that (r,m) ~5 (r',m")
3. &P, (r,m) = Kl¢pif &P, (r',m') |= ¢ for all points (', m’) of R(E,P) such that (r,m) ~7 (', m")
4. E,P,(r,m) = O¢if E,P,(r,m') = ¢ forallm’ > m

5. £,P,(r,m) = init(¢) if £, P, (r,0) E ¢

3.2.6 Analysis

Having described the logic defined in this initial attempt, we note that there are several issues with the
approach. These are:

Quantum gates. The set of actions which an agent may perform (Section 3.2.3) does not include ap-
plication of a quantum gate to a qubit. As almost every quantum protocol includes the use of
quantum gates, it is therefore only possible to verify a limited portion of any quantum protocol.
Since an agent may use its current state to decide which quantum gates to apply to a qubit, or
to parameterise quantum gates, it is not possible to fully model quantum protocols within this
logical formalism.



Quantum Knowledge. It is not explicitly stated in the paper, but it appears that in order to make up
for the lack of quantum gates, the concept of quantum knowledge may be used. As in the usual
interpretation of epistemic logic, the quantum knowledge operator does not state that an agent is
in a position to determine the truth of a given proposition, but that it has the information available
to it including the state of its qubits to determine the truth, given unlimited resources to do so.
There are several issues with quantum knowledge:

e Physically, an agent’s possession of a qubit does not imply that it knows anything about
the state of the qubit. It is only possible to obtain information about a qubit by measuring it,
which irreversibly changes the states of the qubit. Consider a situation in which there are two
agents A and B. Agent A may initialise a qubit to state |[+) and then transmit this qubit to
agent B. B will not know anything about the state of the qubit, and the only way to determine
any information about the qubit is to measure it. So, suppose B decides to measure the qubit
in the basis {|0), |1) } (or any other arbitrary basis). The outcome of the measurement will be
either |0) or |1) (or a vector of the chosen basis), with equal probability. Not only has B not
been able to correctly determine the state of the qubit, but has also destroyed the original state
which the qubit was in when it was first received. Up until the state where B destroyed the
state of the qubit by making a measurement, A was aware of the state of the qubit. However,
the definition of quantum knowledge means that A no longer has quantum knowledge of the
state of the qubit as soon as it has transmitted it to B. There is no general way for an agent to
determine the state of a single unknown qubit in its possession. Therefore, the interpretation
of quantum knowledge which equates possession of a qubit with knowledge of its state does
not appear to be valid.

e Itis argued by the authors that this difficulty may be overcome by considering that in prac-
tice, operations are not performed on single qubits, but in fact multiple qubits (ensembles)
which are all initialised to the same state are used [15]. Measurements are performed by
selecting a single qubit from the ensemble and measuring it alone. Many of the qubits of an
ensemble may be measured, which gives a probability distribution of the state of qubits in
the ensemble. Using this probability distribution, an agent may estimate the state of qubits
in the ensemble.

However, there are two problems with the ensemble interpretation:

- Itis pointed out by the authors themselves that the ensemble interpretation poses prob-
lems when considering the Quantum Teleportation protocol (see Section 4.2 for a de-
scription of the Quantum Teleportation protocol). One may assume that Alice’s first
qubit is actually an ensemble of qubits, and she selects a single one of these qubits to
teleport to Bob. However, the ensemble interpretation no longer makes sense when con-
sidering Bob’s qubit, as it is not an ensemble anymore, but a single qubit. An alternative
interpretation of the protocol (which is not discussed in the paper) would be to suggest
that Alice performs the teleportation protocol on all the qubits in the ensemble, so that
Bob “receives” an ensemble of qubits. However, this presents a problem when Alice
comes to measure her qubit and transmit the result classically to Bob, as her measure-
ments will not all give the same result. If she were to transmit all of these measurement
results to Bob, he would not know which measurement result pertains to which individ-
ual qubit in the ensemble. Therefore, he would not be able to apply the correct gates to
change the state each individual qubit to equal the original state of Alice’s first qubit.

— Given additional knowledge of the expected state of a qubit (for example, it may be
known that a qubit is in one of the four states |0), |1), |[+) or |—)), it is be possible to
determine with high probability the exact state of a qubit. However, in general there are
an infinite number of possible states which a qubit may occupy. Therefore, an infinite
number of measurements is required to determine the exact state of an unknown qubit.
Therefore, it is not possible to determine the exact state of any qubit in general.

Since both of these two problems appear insurmountable, it can be argued that the ensemble
interpretation is not a valid one. As the interpretation of qubits as single qubits is also not
valid, it appears that it is not possible to conceive a valid notion of quantum knowledge.



o Finally, the authors retreat a little further and argue that quantum knowledge does not model
the knowledge which an agent may be in a position to compute given a realistic allocation
of resources, but instead is an information-theoretic idealisation of knowledge representing
the potential maximum knowledge which may be known at a given state. However, I would
argue that there is no reason why this argument may not be extrapolated as far as suggesting
that agents are omniscient: Since it is has been assumed that information which is physically
un-knowable may be known (the state of an arbitrary qubit), there is no reason not to as-
sume that other information which is also physically un-knowable may also be known. For
example, the state of qubits possessed by other agents, the complete state of of other agents,
or even the global state of the system may also be assumed to be known. Clearly, it is absurd
for an agent to be completely aware of the global state. Similarly, also knowing any subset of
the global state which is not part of the local state is also unrealistic.

Alongside the main problems with this approach, it is also difficult to employ this approach for
automatic verification of epistemic properties of quantum protocols. Since the approach has been de-
veloped independently of any semantics of quantum computation, there is no way to specify a quantum
protocol from which the runs may be generated. The only way to generate the runs of a given protocol
is to do so by hand, in an ad-hoc manner.

Although it is not a barrier to verification of protocols, it is also noted that the probabilities which
which a given measurement occurs are not modelled. Therefore, it is not possible to determine the
probability with which a particular knowledge states arise.

Finally, no results which describe all of the steps of verification of any quantum protocols using
Qubit Message Passing Environments have been presented. The published literature on this approach
only states properties of various protocols without describing the process of verifying them. Essentially,
this approach has not been shown to have been successfully used for verifying epistemic properties of
any quantum protocols.

3.3 Distributed Measurement-Based Computation

An alternative approach to modelling knowledge in quantum systems has been developed which is
built on top of a semantics for quantum computation. These semantics are known as the Measurement
Calculus [18, 19], which is based on the one-way quantum computation model [49]. These semantics
were extended to a distributed multi-agent setting to give Distributed Measurement Based Computation
(DMC) [17]. Interestingly, the logic in this work does not contain any notion similar to the quantum
knowledge of the previous approach.

First, a very brief explanation of the semantics of the Measurement Calculus will be given, and a
short description of the extension to a multi-agent setting. Subsequently we describe the epistemic
logic whose worlds are defined over the possible states of these multi-agent quantum systems. Finally,
we compare this approach to the one previously described.

3.3.1 Measurement Patterns

Quantum programs which may be executed on a set of qubits are referred to as Measurement Patterns.
Patterns operate over a computation space V, which is the set of qubits over which the pattern operates.
The sets of input qubits I and output qubits O are subsets of V. The sequence of commands A repre-
sents the operations which the pattern performs on the qubits in the computation space. A pattern is
completely specified by P(V, 1,0, A).

The full semantics of measurement patterns is presented in [19]. For brevity these will not be re-
peated here. Instead, a short intuitive description of measurement patterns follows. The sequence of
commands is made up of basic operations which are performed on the qubits in the computation space.
Operations are executed sequentially, beginning with the rightmost operation. Each operation may be
one of the following:

Entanglement. The entanglement operator E,, entangles the qubits x and y, in a similar way to the
entanglement circuit (Figure 2.1).
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Measurement. The measurement operator M# measures the qubit 7 in the basis |+4), |—4), given by:

1
V2
1

Y%

The result of measuring qubit 7 is denoted s;, and it is assumed that the qubit is destroyed by
the measurement (physically a qubit will not be destroyed by a measurement, but we can subse-
quently ignore its state). This means that the meaning of s; is never ambiguous. We consider that
s; = 0 if the state of the qubit collapses to |[+,) and s; = 1 if its state has collapsed to |—).

|+a) =—=(10) +¢1))

|—a) (10) — ¢ [1))

Measurements which are parameterised based on the results of earlier measurements are referred
to as dependent measurements. A dependent measurement is given by {[M*]*, where s and t are the
results of earlier measurements. The meaning of {[M*]* is

t[M;x]s _ M(—l)%-&-tﬂ

1
From this definition it can be seen that M is equivalent to °[M#]°.

Corrections. The correction operators X; and Z; apply the X gate and Z gate respectively to the qubit
i. These operators may also depend on previous measurement outcomes, and the notation for the
dependent correction operators is Xj and Z; where s is a previous measurement outcome. When
s = 0, the correction operator is not applied, and when s = 1, the correction operator is applied.

It is clear that general unitary operators are not permitted in sequences of events. An additional
restriction on the specification of measurement patterns is that all entanglement operations must be
performed first. All measurement operations must be performed after the entanglement operations.
Finally, correction operations may only be performed after measurement operations. This is not a
drawback as this model of quantum computation is universal (for a proof see Section 4 of [18]). As
an example, consider a pattern which applies the Hadamard gate to a qubit:

Hn= ({1,2}, {1}1 {2}, X;lM?Eu)

The computation space V = {1,2}, which states that the computation space consists of two qubits.
The input set I = {1} and the output set O = {2}. The input qubit is initially in an arbitrary state
(call this state |ip)). The second qubit is initialised to |+) prior to the execution of this pattern. When
the pattern executes, the two qubits are entangled and then the first qubit is measured. The correction
operator X is applied to the second qubit depending on the result of the measurement outcome. If
the first qubit collapsed to the state |[+) then no correction is required, as the state of the output qubit
is already equal to H|y). If the first qubit instead collapsed to the state |—), then the second qubit’s
state is equal to XH|). Since X is its own inverse, applying the X correction transforms the state to
X?H|¢) = H|p), the desired outcome.

3.3.2 Quantum Networks

A Quantum Network is essentially a multi-agent system consisting of agents which perform classical
and quantum computation. Agents may communicate over classical channels, and may transmit qubits
over quantum channels. Quantum Networks are specified in a form which is similar to a process algebra
[48]. The general form of a Quantum Network is:

N:Athl.gl ‘A21Q2.52| |AQO5m||(T

The | symbol denotes a parallel composition of agents. ¢ is the quantum state of the network,
consisting of the state of a set of qubits and their entanglement. The state of all qubits |¢) is the tensor
product of all the individual qubits in the system. The entanglement of qubits in the system is specified
by the notation E,y, which denotes that the qubits x and y are entangled.
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A, is the n-th agent in the network and is in possession of a set of qubits Q,. The sequence E, of
events performed by agent A, may be generated from the following set of actions:

Classical communication. Communication of classical information may take place over a classical chan-
nel. clx denotes the transmission of the bound variable x over the classical channel, and c?y
denotes the reception of a value, which is then bound to the free variable y.

Quantum Communication. Qubits may be transmitted over a quantum channel. gc!x denotes trans-
mission of the qubit x and qc?y denotes reception of the qubit y.

Patterns. The agents may also execute patterns on the qubits in their possession. This essentially allows
them to perform any quantum computation locally.

The grammar generating event sequences (where P is a pattern) is:

Eu=clx|c?x|qclg|ac?g|P|EE

As with patterns, the event sequences are executed in right-to-left order. The state of the agents and
the network at any given time is specified by a configuration. A configuration is of a similar form to
that of a network, with the addition of a local state for each agent:

C=0||T1,A1: Q1.8 | T2, Ax: Q.8 | Ty At Q&

The local state I';, of the agent A, is used to record the outcomes of measurements. The event
sequences, and state of the qubits are generally not equal to the initial state of the network. As events
are executed, they are consumed, and qubits may be destroyed by measurement, or may be transmitted
between agents.

3.3.3 An Interpretation Function over Configurations

The set of all possible future configurations of a quantum network may be determined by simulating
its execution using the semantics of DMC. Once these states have been determined, an interpretation
function may be defined over all of them. The function I(C, ¢) defines the interpretation of fact ¢ in
the configuration C. Facts are interpreted with respect to a network and a possible configuration of that
network:

C,N ¢ < I(C,¢) = true

Facts which may be defined are limited to the following specification:

CN E (x=v)<=3ili(x)=v (3.1)
CN [ (x=y) = 3il;;(x) =Ti(y) (3.2)
C,N E (Ajhasqg) <= g€ Q; (3.3)
CN E (1. .qgn=0)=q1...qn=0 (3.4)
CN E (g.= q]) = Jdogi=q;=0 (3.5)

Equations 3.1 and 3.2 refer to classical value and variable equality respectively. Equation 3.3 refers
to the agent in possession of a particular qubit. The final two equations may only be applied to qubits
whose state is known in some sense. Equation 3.4 describes equality of qubits where the state vector of
the qubits are known. Equation 3.5 refers to the equality of qubits whose state vectors are unknown, but
it is known that their state vectors are equal. Two additional functions, init(x) and fin(x) are defined
which respectively give the initial state and final state of a classical variable or qubit. The standard
propositional rules may also be applied to facts in the usual way, for example conjunction (e.g. ¢1 A ¢2)
and negation (e.g. —¢).

Care must be taken when specifying a property using the init(x) and fin(x) functions, as they can
lead to surprising properties. For example, the predicate ¢ = (init(x) = fin(y)) will be true at all states
in a protocol in which the final state of y is equal to the initial state of x - whilst this seems obvious,
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combining this predicate with an epistemic modality (K;¢) effectively states that agent i “knows” ¢ at
all times regardless of how the epistemic accessibility relation between states is defined. Whilst this is
true, agent i may not know if the final state has been reached - therefore, they may not know if they are
in a state in which the current value of y is equal to the initial state of x.

3.3.4 A Logic with Epistemic and Temporal Modalities

It is argued by the authors that it is not sensible to define a notion of quantum knowledge based on
the possession of qubits for similar reasons to those given in Section 3.2.6. As such, only one epistemic
accessibility relation, ~;, is defined for each agent i. The local state of each agent is made up of:

e Its classical state, ;.

Which qubits it possesses.

The operations which it has applied to these qubits.

The initial entanglement state of its qubits.

The epistemic modality K; is defined in the usual way. In the configuration C, the agent i knows the
fact ¢ when the fact ¢ is true in all of the other configurations which it considers possible based upon
its local state:

C,N = Kip <= VC' ~; C:C =6 (3.6)

A temporal modality is also defined, since a temporal accessibility relation is defined over the enu-
merated future configurations of a network. Two configurations, C and C’ are related by the temporal
accessibility relation (written C = C’) if the configuration C’ is obtained from the configuration C in

one step of the execution semantics of DMC. The closure of this relation is C =L C’, which states that
the configuration C’ can be reached from the configuration C by a succession of steps of the execution
semantics, given by the path . The temporal operators O (always) and < (eventually) are combined
with path operators A (all paths) and E (there exists a path) to give the following semantics:

C,N EAD$ < Vv,VC withC =% C': C' = ¢
C,N |=E0¢p <= 3v,VC' withC =5 C': C' = ¢
C,N [EAGP <= V7,3C withC =% C': C' |= ¢
C,N [=EO¢p <= 39,3C with C == C': C' |= ¢

Additionally, composite notions of knowledge may also be defined: Everybody knows (Eg), Com-
mon Knowledge (C¢) and Distributed Knowledge (D) are all defined in the usual way:

C,N EEgp <= Vie G:C = Kigp
C,N ECgp < Vk >0:C |= EGop
C,N EDgp <= VC' € ni{C" ~;C}:Cl=¢

3.3.5 Decision Procedure

A decision procedure for determining if a given epistemic property holds for a given network has been
presented [21]. The decision procedure has been proven to be sound and terminating with respect to an
epistemic specification and a DMC model of a quantum network. The steps of the decision procedure
are as follows:

Generation of traces using DMC. A specification of a quantum network is supplied which specifies
the network to be verified. All possible execution traces are generated from this network specifi-
cation.
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Specification of Security Properties. The security properties which are to be verified are specified as
an Epistemic System, which states the security properties to be verified in terms of knowledge.

Generate Epistemic traces. Epistemic properties of agents are defined over the execution traces pro-
duced in the first step. These describe the knowledge of each agent at each state in the traces.

Verification of Properties. The properties given in the Epistemic System are compared against the epis-
temic properties of the agents in order to verify whether the specification is met by the network.

This decision procedure has been applied to the Quantum Secret Sharing protocol [40] to show
that it is not secure. Additionally, the path of an attack which exploits the weakness of the protocol is
discovered, and is presented in [21].

3.3.6 Analysis

This approach to modelling knowledge in quantum systems has several strengths over the previously
discussed approach. The characteristics which distinguish it are:

A Semantics for Quantum Computation. Since the epistemic logic is evaluated over a model consist-
ing of worlds which may be generated by execution of a formal specification, it is possible to
automatically verify properties of a given network. Only the initial state of a quantum network,
and the epistemic properties which are to be verified need to be supplied; generation of the pos-
sible worlds and model-checking of the epistemic formulae may be performed algorithmically.
Because the necessary algorithms have already been developed, it is possible to produce an im-
plementation of an epistemic model checker based on this work without further research.

Quantum Gates. Although arbitrary gates may not be defined, the measurement patterns which may
be defined are universal, allowing any quantum computation to be represented in this formalism.
Additionally, the measurement patterns which have been applied to local qubits are recalled by
the agents in their classical state. This allows agents to distinguish between states in which they
have performed operations on qubits for which the initial state was unknown.

Lack of Quantum Knowledge. As stated previously, the authors of this work argue that there is no
such thing as quantum knowledge. Instead, knowledge in quantum systems is only about infor-
mation which may be obtained classically. The lack of quantum knowledge avoids all of the issues
associated with its existence.

Representative Semantics for Classical Knowledge. The definition of classical knowledge in this ap-
proach also appears more reasonable, as its equivalence relation takes into account the operations
which have been performed locally upon qubits, and the initial entanglement state of its qubits.
It is also useful that agents may only be aware of the initial entanglement state, since this allows
attacks upon quantum protocols by adversaries to be modelled: For example, an attacker may
provide a qubit to an agent which is entangled with another qubit which it retains. This scenario
can be described using the DMC formalism.

Successful Application. Several results have been presented in the literature which describe and anal-
yse the process of verifying several quantum protocols using this approach: Ekert’s Quantum Key
Distribution protocol [22] is verified in [16], the Quantum Secret Sharing protocol [40] is examined
(and found to contain security issues) in [21], the Superdense Coding [12] and Quantum Telepor-
tation [11] protocols were verified in [20]. The fact that a flaw was discovered in the Quantum
Secret Sharing protocol is testament to the utility of this approach - had it been the case that no
flaws were found in any of the protocols, it would have been difficult to accept that this work is
truly useful for verifying epistemic (security) properties of quantum protocols.

Although the logic does not reason about probabilities, there are probabilities associated with mea-
surements in the semantics of DMC. The probability of each transition between configurations in the
model is equal to the probability of a transition given by the execution semantics of DMC. Using this
property could allow an extension of the logic to be developed which may be used for reasoning about
the probability of specific outcomes.
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3.4 Dynamic Epistemic Quantum Logic

Dynamic Epistemic Quantum Logic is a recently-developed logical framework for reasoning about
quantum mechanical behaviour and quantum programs. The logic may be thought of as being in three
parts:

Propositional Logic. The propositional part of the logic deals with the truth or falsity of statements
about a quantum system. For example, a proposition may mean “The state of qubit 3 is |0)”.
All of the propositional axioms are admitted to the propositional part of the logic (including the
distributive law).

Dynamic Logic. The dynamic part of the logic is used to represent actions performed upon a quantum
system. These actions may be the application of a quantum gate to a qubit, or measuring a qubit.
All of the axioms of Propositional Dynamic Logic (PDL) [14] are admitted to the dynamic part of
the logic, with the exception of the test ¢?. A “quantum test” is a measurement, which changes
the state of the system, and therefore a proposition which was false before the quantum test may
be true after the quantum test. In PDL, propositions which are true after a successful test were
also true before the test - therefore, the axioms for a PDL test are not appropriate for the quantum
test.

Epistemic Logic. The epistemic part of the logic describes the information about the global system
which is available in a subset of the system. Facts which are “known” to the subset under con-
sideration are determined in the familiar way for an epistemic logic, by checking the truth of a
proposition describing the fact in all of the possible worlds at a given state.

The motivation for the development of this logic was to create a system which may be used for
reasoning about quantum behaviour without giving up any of the propositional axioms, as is commonly
required in other quantum logics. The resulting logic are may be used to prove correctness of quantum
protocols by deriving theorems which prove the correctness based on the axioms of the logic.

Throughout its development, the logic has been presented in various forms, which are all closely
related. The logics are known as the Logic of Quantum Actions [4], the Logic of Quantum Programs
[7, 3] and the Logic of Quantum Information Flow [5, 8, 6]. We will focus on the Logic of Quantum
Information Flow, since it includes the epistemic part of the logic.

A brief description of the models over which the dynamic and epistemic logics are evaluated will
first be given. Subsequently, the logical treatment of entanglement, and how this relates to the epis-
temic part of the logic is described. A description of the syntax and semantics of the logic will be
given. Finally, we conclude by analysing the utility of the logic for epistemic verification and making
comparisons to the previously-described approaches.

3.4.1 Quantum Transition Systems

The dynamic part of the logic is built up over a Quantum Transition system, which has a set of states
2. These correspond to the states which a physical quantum system may occupy, which are charac-
terised by one-dimensional subspaces (“rays”) of a Hilbert space. The quantum system may contain
an arbitrary number of qubits (Each qubit is denoted g;), and therefore the Hilbert space may be of an
arbitrary number of dimensions. The accessibility relation between two of the states of X is based upon
the action of quantum gates (unitary transformations) and measurements of qubits. Two states s; and

sy are related by the accessibility relation s; LN sy if the operation of the quantum gate or measurement
R on 51 leaves the system in the state s;. It is clear from these definitions that there are an infinite num-
ber of worlds of all Quantum Transition Systems, since there are an infinite number of one-dimensional
subspaces of any Hilbert space.

The authors state that a disadvantage of using rays as the definition of a state is that the phase of
the system is lost. However, this is unlikely to be a problem for checking of most quantum security
protocols, as phase-related effects are not present in these protocols.
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3.4.2 Separation and Entanglement

Quantum systems made up of multiple qubits may be broken down into subsystems and considered
separately. If we have a global system S (consisting of all the qubits in the system), the system may be
broken down into a number of subsystems:

S=5® - ®S, (3.7)

Each subsystem S,; may contain several qubits, and must contain at least one qubit. Two subsystems
are separated if they do not share any entangled qubits. When two systems are separated, actions which
are performed on one of the subsystems have no effect on the other subsystem. The actions which affect
only the subsystem i are referred to as i-local actions.

An equivalence relation over possible global states from the point of view of the i system may be
defined. Two states s and s’ are i-equivalent (s ~; ') if and only there exists a j-local action U such that
s = U(j) wheni # j. As a concrete example, consider a system of two qubits, 41 and g,. The compound
system S = g1 ® go. We (arbitrarily) define two subsystems S; and S, where g1 € S and g2 € S».
Assume that in the state s, g1 = |0) and g, = |0). In this state, the qubits are clearly not entangled. Now,
the action of applying the Hadamard gate H to the second qubit (call this action Hy) changes the state
of the second qubit to |+). Call this new state s’. Since H; is a 2-local action such that s’ = Hj(s), the
states s and s’ are 1-equivalent, i.e. s ~; s’. From the point of view of subsystem Sj, both the states s
and s’ are equally possible.

A special constant c is also defined, which denotes that a system is separated, i.e. that it is not entan-
gled. A subsystem s; is not entangled with another subsystem s, in the state s iff there exists a state s’
such thats ~, s’ ~ c.

3.4.3 Introducing a Knowledge Operator

Since there is an equivalence relation ~; for possible worlds based on the information available to the
subsystem i, the authors argue that it is natural to define an epistemic modality, K; whose accessibility
relation is based on this equivalence relation. This knowledge operator is somewhat abstract, since it
does not consider knowledge of an observer or agent in possession of the qubits, but rather only the
information available about the global system based on the information available at subsystem i.

Since the accessibility relation is an equivalence relation, the epistemic modality satisfies the axioms
of the system S5, much like the usual definition of an epistemic operator. Similarly, the truth of a
statement involving this operator at a world w of a Quantum Transition System Q7 S may be defined
as

Q7T S,w = K;¢pifand only if Vo' : w ~; w', QT S,w' = ¢ 3.8)

It should be noted that this epistemic modality is similar to the modality K? of Qubit Message Pass-
ing Environments. Therefore, it is probably not very useful for actual verification of knowledge which
an agent may be in possession of, since possession of the subsystem does not enable one to know the
state of the qubits.

3.4.4 The Logic

The syntax of the logic is defined for propositions, ¢, and for programs, 7:
pu=loi|-¢|¢A¢|[7le|Kip
mu=la; | $? | mURT || Tt
All of the axioms of Propositional Dynamic Logic are admitted, with the exception of the axiom

regarding the test ([p?]q = p — g). The semantics of the logic without the epistemic operator are given
in [7]. For simplicity, the full semantics will not be repeated here. Instead, a short description will be
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given to provide the reader with an intuition of the semantics. The meaning of terms in the grammar
generating ¢ are:

Propositions. ¢ is a propositional variable, or the special constant c. Propositional variables may be of
the form b;, which states that the qubit g; is in the state |b). The truth of the propositional variable
depends on whether the qubit is actually in that state. The proposition ¢; applies the proposition
to a particular subsystem of the compound system. At a world w of a quantum transition system
QTS, QT S, w [= b; iff the qubit g; is in the state |b).

Negation. The proposition ¢ is a property, which may be testable (see the description of Quantum Tests
below). The negation of a property —¢ is the expression that a property ¢ does not hold - however,
this negated property may not be testable itself. The set of all testable properties can be made up
from all of the negation-free formulae of the logic.

Conjunction. The conjunction of two propositions ¢ and ¢, is given in the usual way by ¢; A ¢, and
this conjunction has the same meaning as in a Boolean algebra. Q7 S, w = ¢1 A ¢ iff QT S, w =
p1and QT S, w = ¢s.

Execution. The proposition [7t]¢ states that the property ¢ holds after execution of the program 7.
QT S,w = [n]¢ if and only if for all w’ such that w = w’, QT S, w’ = ¢.

Knowledge. The knowledge operator K;¢ is as described above (Equation 3.8).
The meaning of terms in the grammar generating 7t are:

Actions. «; is the action of a quantum gate on the qubit or set of qubits i. If a formula is evaluated with
respect to world w prior to the execution of the action, the remainder of the formula is evaluated at

the world w’ after the execution of the action if w Ll Note that since actions are deterministic,
there is always one a; successor to any world w. QT S,w = [a;]¢ iff for w’ such that w 5w,

QT S, w' = ¢.

Quantum Tests. The operator ¢? is a successful test of a property ¢. This corresponds to the measure-
ment of qubits. Unlike the PDL test, the successful execution of a quantum test may also change
the truth state of propositional variables . If the quantum test is successful, then the properties
which were tested for will hold in the resulting world, even if they did not in the world in which
they were tested. The quantum test will fail if the property of the qubits tested is orthogonal to
the property tested. For example, if 41 = |0) in a world w of a quantum transition system Q7 'S,
QT S,w = [11?]L since the outcome of measuring qubit q; will never be |0). For successful

quantum tests, Q7 S, w = [¢1?]¢s iff for all w’ such that w N ,OTS,w' = ¢o.

Choice. A non-deterministic choice of programs 71y and 71, is given by my U 7. QT S, w = [y U 112]¢p
iff QT S, w |= [m|p or QT S, w = [m2]¢.

Composition. The execution of a program 71, after the execution of a program 7 is given by 71y; 715.

QT S, w |= [my; mo¢ iff QT S, w = [m][m2]¢.

Iteration. Iteration of a program 7t zero or more times is given by 7*. Q7 S, w = [7*|¢ iff QT S, w |=

¢ A [r][*]g.

3.4.5 Analysis

This approach is quite different to the two previously presented, as it is designed as a tool for proving
correctness of quantum programs rather than as a tool for model checking. However, the addition of
the knowledge operator does allow the examination of some epistemic properties of the systems. The
main differences between this approach and the previous two are:

Abstraction. As a consequence of the logic being designed to prove properties of quantum computa-
tions in an abstract fashion, it is not possible to represent agents using the logic. The closest thing
to a notion of agents in the system is the ability to consider subsystems of quantum systems in
terms of a set of qubits.
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Quantum Knowledge. The knowledge operator has a similar behaviour to that of quantum knowledge
in the Qubit Message Passing Environments approach. It is stated by the authors of the work on
Dynamic Epistemic Quantum Logic that the knowledge operator should not be regarded as the
knowledge which could physically be gathered by an observer, but instead should be used to rea-
son about the information in the rest of the system. This is because the equivalence relation for the
knowledge operator is defined in terms of entanglement of the qubits of the subsystem under con-
sideration. As a result, the knowledge operator provides a description of the correlation between
the effects of measurement on one part of the system with its effects on another, non-local part
of the system. Although this interpretation of the knowledge operator is far more plausible than
one which suggests that agents know the state of any qubit, it is no more useful when considering
distributed systems of agents.

As with the first two approaches described, this logic does not reason about probabilities of mea-
surement results. Instead, any possible measurement results are considered. However, with further
research, it may be possible to add to this logic to enable reasoning about probabilities.

Because this logic is intended as a proof-theoretic tool, it may be used for reasoning over any qubit
values (by using a proposition such as ¢, which denotes that qubit 1 has any testable property). This
is a problem if epistemic properties are to be verified automatically, since the state space of a quantum
program described using the logic is essentially infinite. In other words, there are an infinite number of
possible worlds in the quantum transition system, each world having an infinite number of relations to
other worlds. However, it may be possible to use the logic to produce proofs of epistemic properties,
rather than by model checking.

Finally, it is noted by the authors that the logic is not necessarily complete with respect to the pos-
tulates of quantum mechanics. Because of this, it may not be possible to prove certain properties of
quantum programs which are actually true. This will also apply to any proofs of epistemic properties.

3.5 Conclusion

In this chapter we have seen three approaches to modelling knowledge in quantum systems:

o The first approach to modelling knowledge involves using Qubit Message Passing Environments,
which was developed independently of a semantics for quantum computation. This work is not a
viable platform for further research, as it has numerous issues, including a lack of quantum gates,
a flawed definition of knowledge, and no mechanism for specifying a quantum protocol from
which the possible states may be algorithmically determined.

e The alternative approach to modelling knowledge is the DMC-based approach. This approach has
the advantages of being grounded in a full semantics for distributed quantum computation, has a
plausible notion of knowledge about quantum states, and probabilities may be determined from
the execution semantics of DMC. This work is the most preferable base from which to perform
further research.

e A more abstract approach to modelling knowledge in quantum systems is that of Dynamic Epis-
temic Quantum Logic. Although this approach is useful for verifying the correctness of quantum
protocols, it is too abstract to be used to model knowledge in multi-agent quantum systems.

Further work starting from the DMC-based approach may involve:

e Addition of probabilities to the logic. The probability of a transition to a particular configuration
may easily be determined from the execution semantics of DMC. A logic which reasons about
probabilities over these configurations may be very similar to Probabilistic Computational Tree
Logic (PCTL) [32], since the current definition of the logic over configurations is very similar to
Computational Tree Logic [35].

¢ Implementation of a model checker. Since the semantics of DMC are already defined, it is possible
to implement a model checker which generates the configurations automatically based on the ex-
ecution semantics of DMC. Standard model checking techniques may be used to verify epistemic
formulae over these configurations.
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e Use of the implementation to verify other quantum protocols. Generating the specification of
a network and the epistemic properties to be verified requires very little work. Once a model
checker has been implemented, it could be used to model check quantum protocols easily - vari-
ations of attacks may be checked using only a small amount of human time, since the quantum
network may easily be modified to specify different attacks on a protocol.
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Chapter 4

Epistemic Verification of the Quantum
Teleportation Protocol

4.1 Introduction

In this section, we use each of the three approaches described in the previous chapter to verify epistemic
properties of the Quantum Teleportation protocol. The process of verification is described and used to
highlight some of the characteristics of each approach. First, the Quantum Teleportation protocol is
described in detail. Subsequently, the protocol is verified using each of the three formalisms.

4.2 The Quantum Teleportation Protocol

The Quantum Teleportation protocol was first presented in [11]. The protocol achieves the transmission
of the state of an arbitrary qubit from an agent A (Alice) to another agent B (Bob) using only a classical
channel, and an entangled pair of qubits. Figure 4.1 shows a quantum circuit which implements the
Quantum Teleportation protocol.

) (H— A}
|Bto, ® E:’_L
2 X [7] | >
|r’300> 1 1 1 1 4] [£] 1 (4
o) 1) ¥2) [¥3) 2y

Figure 4.1: A quantum circuit for the Quantum Teleportation protocol.

Alice wishes to send a qubit to Bob without using a quantum channel, only using a classical channel.
Alice holds the top two qubits (call them |¢1) and |¢,), and Bob holds the third qubit (called |¢3)). |¢2)
and |¢3) are in the entangled state |Bgo). The states |¢;1) and |Bg) are:

[91) = «[0) +B[1)

Boo) = 2[|oo> + 1))

Alice will “teleport” the state of |¢;) to Bob so that he eventually has a qubit which is in the state
«|0) + B|1). The state of the whole system in the initial state is given by

§1) @ [¢2) © |¢p3)

—=[a10)(00) + [11)) + B|1)([00) + [11))] @

o)

S5
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Alice sends her qubits through a CNOT gate, giving

1) = (CNOT@I)[¢o)
[(CNOT(]00)) © I[0) + CNOT(|01)) ® I(|1))]

[(CNOT(|10)) ® I|0) + CNOT(|11)) ® I(|1))]

SI= S =

_ o« B
- ﬁ(|000>+\011>)+ﬁ(|110>+|101>)

Alice then sends her first qubit through a Hadamard gate, giving

|12)

(H@I®I)|yr)
(H|0) @ (I ®1)|00) + H|0) ® (I ® I)]11)

(H1) ® (I®1)]10) + H|1) ® (I ® I)|01)

NSk

o p
5 H10)(100) +[11)) + EHIU(H@ +101))

(10) + 1)) © (J00) + [11)) +

S

f\f \f\f

E(\ooo> +[011) + [111)) + g(\o1o> +[001) — |110) — |101))

(10) = 1)) @ ([10) + |01))

(4.2)

Before we examine how the measurement outcome affects the state, we can re-arrange |¢,) so that
we can see more easily how the measurement outcome affects qubit 3:

o) =

= NIR DN

(J000) + [011) + [111)) + §(|010> +1001) — [110) — |101))

000) + g\oon + §|010> + %|011> + %|100> - §|101> - §|110> + %|111>

51100) @ (#]0) + B[1)) +|01) ® («[1) + B[0))

|10> («]0) = B[1)) + [11) @ («[1) — B|0))]

4.3)

Alice then measures her qubits, which will give her one of four measurement outcomes with equal
probability, either |00), |01), |10) or |11). It can be seen from inspection of Equation 4.3 that the third
qubit will be left in a state «|0) + B|1), «|1) + B|0), |0) — B|1) or «|1) — B|0), corresponding to the
measurement outcome. The system is now in one of the four states given by:

|00) ® ([0) + B[1)) with probability }

~}101) ® (a|1) + BJ0)) with probability
I¥a) = |10) ® («|0) — B|1)) with probability §
|11) ® (a[1) — B|0)) with probability }

(4.4)

Alice then sends two classical bits, m and n to Bob which tell him the measurement outcome. m
is equal to the measurement result of the first qubit, and 7 is equal to the measurement result of the

second qubit.

e In the case where Alice’s measurement outcome was |00), then Bob’s qubit is already in state
«|0) + B|1) so he needs take no further action. In the quantum circuit, this is realised because
zZmxn = 79X0 =2 = I.
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e In the case where Alice’s measurement outcome was |01), m = 0 and n = 1. The transformation
Bob applies is equal to X. As Bob’s qubit is in the state a|1) + B|0), the application of the X gate
transforms his qubit to state «|0) + B|1).

e In the case where Alice’s measurement outcome was |10), m = 1 and n = 0. The transformation
Bob applies is equal to Z. As Bob’s qubit is in the state «|0) — B|1), the application of the Z gate
transforms his qubit to state «|0) + B|1).

e Finally, In the case where Alice’s measurement outcome was |11), m = 1 and n = 1. The transfor-
mation Bob applies is equal to ZX. As Bob’s qubit is in the state |1) — B|0), the application of the
X gate and subsequently the Z gate transforms his qubit to state a|0) + B|1).

After Bob has applied the necessary quantum gates, the state of the system is now:

lva) = (U1 Z"X")[s)
= |mn) ® («]0) + B[1)) (4.5)

Hence we can see that Bob’s qubit is in the state «|0) + B|1) - Alice has successfully “teleported” her
first qubit to Bob without making use of a quantum channel!

4.3 Verification Using Qubit Message Passing Environments

4.3.1 A New Action

In order to represent the Quantum Teleportation protocol using Qubit Message Passing Environments,
we must augment the definition of Qubit Message Passing Environments with a new action, called
gate(g,L): An agent i applies the gate ¢ to qubits in the tuple L. This may only occur when Vn €
L,1loc(n) = i,i.e. an agent may only operate on qubits in its possession.

4.3.2 Verification

There are two agents, A and B. They have no variables. There are three qubits in the environment, the
first two held by A and the third by B. The initial state (call it sg) is given by:

Varg )
locg(0) = locy(l) = A
locy (2) = B
chang(A,B) = chang(B,A) = L
resg = @
Cc i
sg = (Varg,locy, chang, resq)
s = lwo)
so = (s,s6)

Between this state and the next state, Alice performs the action gate(CNOT, (0,1)). Bob performs no
action (If it were required that an agent must perform an action, he could do a sendp (L), to transmit
an empty message to himself). We get the state s1:
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Var1 )
locy(0) =locy(l) = A
loci(2) = B
chan|(A,B) = chan(B,A) = L
resy = @
s{ = (Vary,locy,chanj, resy)
s o= )
s1o= (s],sf)

Between this state and the next state, Alice performs the action gate(H, 1), and Bob transmits him-
self another empty message. We then get the state sy:

Var, = @
locy(0) = locy(l) = A
locy(2) = B
chany(A,B) = chany(B,A) = L
res) @
s5 = (Varp,locy, chany, resy)
s5 = |y2)
s = (s3,85)

Between this state and the next state, Alice performs a measurement, M on her qubits, measuring
them in the basis |00), |01), |10), and |11). Therefore,

1
0
M, = 0 M, =

0 0

Her measurement outcome is recorded in m and n where m stores the result from the first qubit and
n stores the outcome from the second qubit. Again Bob transmits an empty message to himself. We
now have the state s3:

Vary = @
locg(0) =locg(l) = A
locz(2) = B
chan3(A,B) = chan3(B,A) = L
res3ga = ({M,m,n})
reszgp = O
s§ = (Vars, locs, chans, ress)
sio=|¢3)
53 = <Sgr S§>

There are actually four distinct states for s3, which each differ in the measurement outcomes. These
may be referred to as s3_o whenm =n =0,s3_1 whenm =0,n =1,s3_p whenm = 1,n = 0 and s3_3
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when m = n = 1. After this state Alice performs a send4 p({m,n}) action, and Bob transmits himself
an empty message. We now have the states s4:

Vary, = @
locy(0) = locy(l) = A
locy(2) = B
chany(A,B) = {m,n}
chang(B,A) = L
resgs = ({M,m,n})
resyp = @
si = (Vary, locy, chany, resy)
sio=[¢3)
Sg = (sZ,sZ)

Again there are four s, states, which each correspond to one of the measurement outcomes earlier
-s4_ogwhenm =n =0,s4_1 whenm = 0,n = 1,s4_p whenm = 1,n = 0 and s4_3 when m =
n = 1. Alice’s next action is to transmit herself an empty message. Bob’s next action depends on the
earlier measurement outcome. In state s;_¢, he performs the identity transformation on his qubit, i.e.
gate(I,2). In state s4_1, he performs gate(Z,2). In state s4_5, he performs gate(X,2). In state s5_3, he
performs gate(ZX,2). This assumes that he is able to apply a gate which performs the X and Z actions
successively between two states. We now have the state ss:

Vars = @
locs(0) = locs(l) = A
locs(2) = B
chans(A,B) = {m,n}
chans(B,A) = L
ressg = ({M,m,n})
ressg = @
s§ = (Vars,locs, chans, ress)
2= lya)
s5 = (s’é,sé)

As before there are four s5 states, each of which corresponds to a measurement outcome. We have
reached the final state of the quantum teleportation protocol, and have described all the possible states
of the system. We can now enumerate all the possible runs r of the system:

ro = {50,51,52,53-0,54-0,55-0}
1 = {50,51,52,53-1,54-1,55-1}
r2 = {50,51,52,53-2,54-2,55-2}
r3 = {50,51,52,53-3,54-3,55 3}

(4.6)

We can now determine a model in which the runs exist. Figure 4.2 shows the possible states of the
system and the temporal accessibility relation between them. Call this the model M.
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So —> S1 |—>t S2

S3-0 S3-1 Sz-2 S33
S4-0 S41 S4-2 S4-3
S50 S5-1 Ss-2 Ss53

Figure 4.2: The model M - Possible worlds of the QT protocol and temporal accessibility relation

An interpretation function, 7t will now be defined on the model. Take p to be an atomic proposition
which means “The state of qubit 1is |0) + B|1)”. This is true at state sy only. Therefore:

1 whens = s
,P) = 4.7
(s p) {0 otherwise *7)

Now we consider the epistemic accessibility relation for quantum knowledge. This is shown in
Figure 4.3. In order to save drawing a large number of arcs between states, the epistemic relations
are instead depicted by boxes. Any two states bounded by the same box are related by the epistemic
accessibility relation of the agent whose knowledge it represents. The classical epistemic accessibility
relation would be similar assuming that agents can recall what operations they have performed on their
qubits. It is thought that this is a reasonable assumption to make.

So >t S1 > S2
S3-0 S31 S32 S3-3 Alice
Bob
S40 Sa1 Sa2 S43
S50 Ss-1 Ss2 Ss53

Figure 4.3: Epistemic accessibility relation between states in the QT protocol
The formula which we wish to verify that the QT protocol satisfies in the initial state (stated in [51]) is:

Klp A =k%p A Okl init(p) (4.8)

This formula states that Alice quantumly knows that the state of qubit 1 is «|0) + |1), that Bob does
not quantumly (and hence classically) know the state of qubit 1 is «|0) + B|1), but that eventually Bob
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knows that the initial state of qubit 1 is «|0) + B|1). To verify that this formula is realised, we examine
the initial state of each run of the protocol and check that it is satisfied there:

Checking k'ip. In every run, the initial state is the state sy. The only epistemically-accessible state from
so for Alice is sg. Therefore, we only need to check that kil p is true at sg. 7(sp, p) = 1, as required.

Checking ﬂk%p. The epistemically-accessible states from sy for Bob are sy, s1, s2, 530, S3-1, S3—2, 53—3.
Since p is not true at all these states, it is the case that ﬂk%p at sq, as required.

Checking ©k}init(p). Clearly if p is true in the initial state then init(p) is true at all subsequent
states. Therefore, k}init(p) and Ok}init(p) will be true at all states. Although it is the case that
Bob eventually does quantumly know init(p) (i.e. he eventually has a qubit in the state |¢)), it is
not true in a physical system - Bob should not have quantum knowledge of the initial truth value
of p until he has a qubit in the state |¢), which is only true in the states s5. In this example, the
property k% init(p) is verified as being correct even at states where it should not be true.

We may attempt to remedy this by altering the definitions given slightly - we may interpret
k%init(¢) as a modality which is interpreted as being true at states where Bob’s local state gives
him enough information to compute the truth of the formula ¢ at the initial state. However, this
definition is slightly flimsy in that it is somewhat arbitrary, and still leads to incorrect verification.
Bob has enough information in his local state to compute the truth of p at the initial state when
the states s4 and s5 have been reached. Since for Bob each state s4 and s5 is the only epistemi-
cally possible one when in that state, k% init(¢) is true at all of these states. However, since Bob
quantumly knows the initial truth value of p in this states s4, this interpretation also allows the
incorrect verification of epistemic properties.

Since all the terms of the conjunction are realised in both potential interpretations, we can say that
the formula k% p A —k%p A Ok}init(p) is realised by the quantum teleportation protocol. However,
there are problems in this verification of the protocol using both definitions of quantum knowledge of
an initial state, since it is considered that Bob already “knows” the truth of the proposition p in the
states sy, - this is not the case in a real implementation of the protocol, since Bob will not have a qubit in
the same state as Alice’s initial qubit until he has applied the gates to correct the value of his qubit. The
fact that it has been possible to verify a property which is not true suggests that analyses performed
using Qubit Message Passing Environments are not sound.

4.4 Verification Using Distributed Measurement Based Computation

The verification of some epistemic properties of the Quantum Teleportation protocol using the DMC-
based approach is presented in [20]. We briefly reproduce this verification process here with a more
detailed explanation than is presented in the original paper, and verify some additional epistemic prop-
erties which are felt to be relevant. In order to verify the Quantum Teleportation protocol, we must first
convert the Quantum Teleportation circuit to a Quantum Network.

In the literature a slightly simplified notation is used in order to make it easier to read the configura-
tions of the network, without any ambiguity. We will follow this convention in reproducing the analysis
of the protocol. The simplifications include using c!x;x, as a shorthand for c!x;c!x; and similarly for
classical receive and quantum sending and receiving. Additionally in the event sequences, the mea-
surement patterns have the computation space and sets of input and output qubits omitted, and only
the operations performed on the qubits are stated. The equivalent quantum network to the quantum
teleportation circuit is:

QT = A+ {1,2}.[(clszs1)-Myy'] | B+ {3}.[X32Z3".(c?x221)] || Exs

When the measurement is performed by Alice (agent A), there are four possible measurement out-
comes. Therefore, for each subsequent configuration of the network there are four possible configura-
tions, parameterised by the measurement outcomes j; and jp. This gives rise to the configurations:
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C1([9)) =|$)Exz; @, A = {1,2}.[(cls2s1).M3] | @, B : {3}.[X52Z5.(c?x07)]

(Iy))
CLE(ly)) =XRZ1p);[s1,52 = fus ol A(clsrs1) [0, B < (BLIXPZ3 (22031
Cé”z(\lm) :szzj1|lp>; [s1,52 — j1,j2], A | [x1, %2 +— j1,j2], B : {3}-X§ZZ§1)
CLE (1)) =1); 5152 = ju jal A | [, %2 = o, o) B2 {3}

Figure 4.4: The model CM - Possible worlds (configurations) of the QT network and the temporal
accessibility relation

Figure 4.4 gives a graphical representation of the possible configurations, and the temporal accessi-
bility relation between them. We can determine the epistemic possibility relation between these worlds
based on the local information which each agent has available at each configuration. First we determine
the possibility relation ~ 4, the relation for Alice:

Between configuration C; and C;, Alice has performed a measurement, so she does not consider
C; to be a possible configuration when in the configuration C,, and vice-versa.

When in configuration Cy, the four possible measurement outcomes all differ between the four C;
configurations. Therefore, when in one of the C, configurations, Alice does not consider any of
the other four C, configurations to be possible.

Between the configurations C, and Cs, Alice has sent classical information to Bob. She therefore
does not consider any C, configuration possible from any Cs configuration and vice-versa.

Since in each the configurations Cs, Alice had different measurement outcomes previously, she
has a different local state in each of the C3 configurations. Therefore, when in a C3 configuration,
she does not consider any of the other C3 configurations possible.

Between configurations C3 and Cy4, Alice’s local state does not change. Therefore, she considers
C4 configurations possible from C3 configurations and vice-versa. In each configuration Cé”z her
local state is only equal to that of the configuration kaz when j; =k and j, = ky. Therefore, she

only considers CJSU ? to be possible when in configuration Cff] ? and vice versa.
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We may also determine the possibility relation ~p, the relation for Bob:

e Bob has the same local information in configuration C; and all the four possible configurations of
C,. Therefore, in any of these states, Bob considers all of these states possible.

e In each of the possible C3 configurations, Bob has received some information from Alice, altering
his local state. Therefore, he does not consider the configurations C; and C; possible when in con-
figuration C3. In each of the four C3 configurations, he has received different classical information
from Alice. Therefore, when in one of the particular C3 states, he does not consider any of the
other Cj states possible.

o In the C, states, Bob has applied one of four different corrections in each of these states. As such,
when in one of the Cy states, he does not consider any other C4 state to be possible. Additionally,
because Bob has applied corrections between the configurations C3 and Cy, he does not consider
any of the C4 configurations possible when in a C3 configuration and vice-versa.

The epistemic possibility relations are shown in Figure 4.5.

G
c® cV cY Cy ||| |Alice
c c C C -
<o | e I ]

Figure 4.5: The epistemic accessibility relation of Alice and Bob between configurations of the QT net-
work.

We may now define the interpretation of facts over this model. This can be done according to the
specifications given in Section 3.3.3, Equations 3.1-3.5. Using these specifications, there are many facts
which could possibly be defined over the configurations. However we will only describe the definition
of facts which suffice to verify the properties we are interested in. These are:

e Assuming that the first qubit which Alice wishes to transmit is in an unknown quantum state,
|), we define the fact (g1 = |i)). This is true only at the configuration Cy, as it is destroyed by
Alice’s measurement between configurations C; and Cy.

e In the initial state of all paths, (g1 = |¢)), so (init(q1) = |)) is true at all states.

e The final state of qubit 3 is equal to |¢), which is a property that has been deduced throughout
the execution of the network using the execution semantics. Therefore, we can define the fact
(93 = |¥)), which is true at all four of the configurations Cj.

e As (g3 = |ip)) is true at every final state on all paths, (fin(qs) = |¢)) is true at all states.

e Since (init(q1) = |¢)) is true everywhere and (fin(q3) = |p)) is also true everywhere, (init(q;) =
fin(qs)) is also true everywhere.
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It is stated in [20] that the correctness of the QT network may be verified by the following formula,
which does not use epistemic modalities:

Ci(l9)), TP |= AS(fin(gs) = init(q:))

Although this formula does indeed verify the QT network, the diamond is somewhat redundant,
since the fact (fin(q3) = init(q1)) is true everywhere. A more intuitive formula which verifies the QT
network might be given by

Ci(lg)), TP = AC(q3 = init(q1))

This formula is satisfied since the fact (g3 = init(q1)) is eventually true on all paths (in the config-
uration Cy), but is not true at all configurations of all paths. We can also check epistemic properties of
the network:

Ci(l$)), TP = =Ka(q1 = ) A —Kp(q1 = [¥)) (4.9)

This formula states that neither Alice nor Bob ever knows the initial state of the first qubit, which
is teleported. Since |¢) is an arbitrary, unknown state, this is representative of a real-world situation in
which the teleportation protocol is used to transmit an arbitrary qubit. This formula may be verified. It
is obviously true that C1(|¢)), TP |= —Kg(q1 = |¢)), since C; ~p Cz and Co(|9)), TP = —(q1 = |¢)).
To check C1(|¢)), TP |= —=Ka (g1 = |¢)), it must be noted that the state C;(|¢)) may be one of an infinite
number of possible configurations, parameterised by the exact value of |¢), which are all considered
to be equivalent (and therefore possible) from the both agents” point of view. Therefore, we can then
conclude that Cy(|y)), TP = —Ka(g1 = |¢)) does hold, and that Equation 4.9 also holds. Another
interesting epistemic property of the QT network may be verified by the formula:

Ci(ly)), TP = =EOKa(q3 = |¢)) A —EOKg(q3 = |¢))

This formula states that neither agent ever knows the exact state of the qubit. This is also a fact in a
real-world teleportation scenario, so it should be expected that this may be verified in the QT network
also. It may be verified in a similar manner to the previous formula, again by noting that there are an
infinite number of possible configurations parameterised by |¢) exist, which are all possible. However,
we can verify that Bob eventually knows that the third qubit is equal to the initial state of the first qubit:

Ci(l9)), TP |= ACKg (g3 = init(q1))

This formula is verified since at the final configuration of all paths, it is true that (g3 = init(q1)). Ad-
ditionally, when Bob is in one of the final configurations, it is the only configuration which he considers
to be possible. Finally, Alice never knows that (g3 = init(qy)):

Ci([)), TP |= “EOKA(q3 = init(q1)) (4.10)

This formula is verified since the configurations where (g3 = init(q;)) is true are the C4 configura-
tions. Alice cannot distinguish the C4 configurations from the C3 configurations, where (g3 = init(q1))
is not true. Therefore, Equation 4.10 holds.

It has been seen that using the DMC-based approach allows the verification of properties which
essentially describe the correctness of the Quantum Teleportation protocol in terms of knowledge of
the agents. This has been achieved without having to use a problematic interpretation of knowledge,
unlike the previous approach.

4.5 Verification Using Dynamic Epistemic Quantum Logic

An LQP program which implements the quantum teleportation protocol is given in [3]. This program
correctly performs the teleportation protocol; to show that this is the case, we will present a derivation
of the program from the axioms of LQP. The theorems and axioms are as referred to in [3]. There is a
full presentation of a proof theory for the logic given in [7], but in order to keep the derivation simple
it is not used. In the derivation, we will also use “PL” to denote a tautology of propositional logic and
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“PDL” to denote an axiom of Propositional Dynamic Logic (as all the axioms of PDL are admitted to
LQP except for those pertaining to the test ¢?).

Fp1 — ¢ (PL)
Fp1 — (275 Z7 |1 (Unitary Bijectivity 1 since Z = Z¥)
Fo1 — [Z7][Z7 191 (PDL)
For — (211X X121 (Unitary Bijectivity 1 since X = XT)
mon = (25 X3]1X7 ZE ) (PDL)
Fpr — (215 XY] (29, X9 (X7; 2111 (Unitary Bijectivity 1 since X* = 20 =T = T")

Theorem 5 (the Teleportation Property, TP) states that for 1-local testable properties ¢q, - (¢p1 —
[7‘[(1);0'(1)]6]1) — (4)1 N 023 — [ﬁlz?}qg). Therefore:

F 1 A (Z; XO) — [(Z3; Xy) 2?] [Xy; Z7¢3 (Modus Ponens & TP)

Proposition 14 (Bell States) states that the Bell formulae are defined as .Bxy (Z1; x/ ) Therefore:

=1 A B — (B 21 [XY; Zi¢s (Bell States)
The Corollary to Proposition 15 states that for distinct i, j and k, we have - ( /Bgﬁ pk < (CNOT;j; Hy; (x; A
Y;)?)px- We can use this to obtain:
= ¢1 A BSy — [CNOTyo; Hy; (x1 Ay2)?)[XY; Z5 93 (Corollary to Prop. 15)
This is equivalent to:
=1 A B — [7lgs (4.11)

Until now the values over which x and y range have not been considered, as during the early part
of this derivation their values did not matter. It is noted that there are four Bell states, ,BOO, ,801, ,8 and
[311. Therefore, x,y € {0,1}. As a result, in Equation 4.11, we have that

n= |J (CNOTy;Hi;(x1 Ny2)? XY, Z7) (4.12)
x,ye{0,1}

The non-deterministic choice between each of these four programs is required since we wish to
always ensure that ¢3 holds after the execution of the program 7. This allows the full specification of
7t to always execute to completion depending on the measured (tested) values of x and y. It should be
noted that there is an obvious correlation between the six actions of the program 7 and the operations
carried out in the quantum teleportation circuit.

Since it has been shown that Equation 4.11 is valid based on the axioms and theorems of LQP, this
is also a proof that after the execution of the quantum teleportation protocol, the third qubit holds any
testable property which the first qubit held. This implies that the state of the third qubit in the final
world is equal to that of the first qubit in the initial world. Since the ”if” part of the equation also
includes B33, it is essential that the second and third qubits are in the entangled Bell state prior to the
execution of the program 7.

A subset of the quantum model which includes the transition relations which are followed during
the execution of the quantum teleportation protocol is shown in Figure 4.6. The initial world (at which
¢ is assumed to hold) is denoted g;. The final world (at which Equation 4.11 proves ¢3 holds) is
denoted g7. The other worlds are numbered arbitrarily.

Unfortunately this model of quantum teleportation has abstracted away the agents, and it is only
possible to consider what can potentially be known based on the separated states of the qubits. This
can be done by using the notion of separated subsystems. Here we define the subsystems

S=51®5,
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Figure 4.6: A subset of the quantum model Q7 M - Worlds of the quantum model and the transition
relations.

where 51 = g1 ® g2 and Sy = g3 since Alice is in possession of the first two qubits and Bob is
in possession of the third qubit. Since there is not an explicit temporal notion in this logic we are
restricted to evaluating the epistemic properties at specific worlds of the model. To do this we require
an equivalence relation ~; for each subsystem. Of the worlds in the model, the epistemic similarity
relation for subsystem S is

~1={(4,5),(4,6),(47),(5,4),(56),(57),(6,4),(6,5),(6,7),(7,4),(7.,5),(7,6) }

This is because after the quantum test (x; A y,)? is executed, the entanglement is broken, and the
subsystems are separated. Therefore, subsystem S; is not aware of changes which are made in sub-
system Sy, which are the operations performed on qubit 3. Of the worlds in the model, the epistemic
similarity relation for S, is simply ~,= {}. This is because with the exception of the first state, op-
erations are performed on the first subsystem’s qubits with which it is entangled, or local operations
are performed on qubit 3, which are part of this subsystem. However, in the first state there are many
more states which are epistemically possible according to subsystem Sy, since it is not entangled with
qubit g1, there are an infinite number of other possible states which the first qubit may be in which are
also possible. Since there exists a 1-local unitary operation U such that g} ~, U(g1), there exists a state
g1 =~ g1. Now that we have determined the worlds of the model and their relations, we may verify
some properties of the protocol expressed in the logic:

e First we may verify that subsystem S; does not know that the third qubit now has the testable
property which was originally a testable property of qubit 1 at the final state. This is given by the
formula Q7 M, g7 = K1¢3 which is true since g7 ~ g6 and Q7 M, g¢ = ¢3.

e We may also verify that the second subsystem does not know that the first qubit has the testable 1-
local property ¢. This is expressed by the formula Q7 M, g1 = K¢y, which is true since g} ~» g1.
Since testable properties are not in general preserved by unitary transformations, Q7 M, g} = ¢1.

e It is also interesting to verify that the subsystem S, does know that the qubit g3 has the testable
property ¢3 in the final world. This is modelled by the formula Q7 M, g7 = Ka¢s. Since ¢3 is
a testable 2-local property, subsystem S, does not consider any other world possible in which ¢3
may not hold - the only worlds it considers possible only differ in the 1-local properties. Therefore,
the equation holds since Vg, # g7 : g7 #2 g5 and QT M, g7 |= ¢s.

Although these properties have been shown to be valid, the epistemic notion does not represent the
knowledge which an agent may possibly know. The epistemic properties have provided a verification
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of the correlations of effects between the two subsystems, rather than of the information which two
agents in possession of the subsystem may be able to obtain.

4.6 Conclusion

We have seen the application of the three approaches to the epistemic verification of the Quantum
Teleportation protocol.

e The Qubit Message Passing Environments-based approach has problems, as it verifies an epis-
temic property which is not correct. This is in addition to the problem of interpretation of qubits
as ensembles for the Quantum Teleportation protocol.

e The DMC-based approach successfully verified epistemic properties of the protocol. There were
no issues encountered in the verification process.

e Verification of the protocol using Dynamic Epistemic Quantum Logic proved properties of the
protocol which are correct, but do not represent the knowledge of agents in a distributed system.
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Chapter 5

Related Work

5.1 Introduction

In this chapter, we briefly describe other (epistemic and non-epistemic) approaches to verification of
classical and quantum protocols. A short discussion of how additions may be made to some of the tools
implementing these approaches to allow epistemic verification of quantum protocols is given.

5.2 Model Checking

52.1 QMC

Model checking tools such as Prism [36] and SPIN [34] have been used to perform model checking
of the correctness of quantum protocols. In [47, 25], the BB84 Quantum Key Distribution protocol [9]
is analysed using both these model checkers. The analyses demonstrated that the BB84 protocol was
secure, by revealing that as the number of key bits increases, the probability of detecting an attacker
becomes very close to 1, and also that the probability of an attacker (un-noticed or otherwise) only has
a very small probability of recovering half of the key bits.

QMC [26] is a model checker which is able to check properties of a subset of quantum protocols. The
properties which are checked are specified in the Quantum CTL (QCTL) logic. The quantum circuits
which may be checked are restricted to those which may be expressed within the stabilizer formal-
ism [29]. The stabilizer formulation only allows the specification of quantum circuits using the CNOT,
Hadamard and Phase Gates. This restriction is required as stabilizer formalism circuits may be sim-
ulated in polynomial-time using only classical computation [2, 1]. The QMC tool is used to perform
model checking of the Superdense Coding network [12], the Quantum Teleportation protocol [11], and
Quantum Error Checking Codes (see [46], page 425). This work is presented in [27].

An interesting addition to QMC may be the addition of epistemic modalities to the properties which
it may check. At present it does not consider properties of the quantum system which is composed
of parts belonging to several agents. The addition of an epistemic modality would therefore require
modification of QMC to allow the specification of which agents are in possession of which qubits, and
primitives for transmission of qubits between agents.

52.2 MCMAS

MCMAS [39] is a symbolic model checking tool for the verification of multi-agent systems. MCMAS
supports temporal logic and epistemic logic amongst others. A programming language, ISPL, is used
to specify the system and the properties to be verified.

It is possible that functionality for verifying epistemic properties of quantum protocols may be
added to MCMAS. Since epistemic logic and multi-agent systems are already supported, minimal
changes may need to be made. The addition of the semantics of DMC may allow the configurations
to be enumerated. The truth of propositions over these configurations may also be determined using
the specifications for propositions given in Equations 3.1 to 3.5. The logic present in MCMAS which
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performs model checking may then take over and determine the truth of epistemic properties of the
specified system.

5.2.3 Adding an Epistemic Modality to Existing Model Checkers

The choice of defining an equivalence relation between states over which the modality operates for each
agent must also be made. As it is not the case that agents may know the exact state of qubits which are in
their possession in general, it seems sensible that the relation should only be based on the classical state
of agents in the system. This would give an operator which behaves similarly to the knowledge oper-
ator in the DMC-based approach, and the classical knowledge operator in the Qubit Message Passing
Environments-based approach. It may be useful for verification of protocols if a “knowledge” operator
which has behaviour similar to that of the knowledge operator in the Logic of Quantum Information
Flow or quantum knowledge in Qubit Message Passing Environments, but this operator should not be
taken to necessarily represent the knowledge which an agent could possibly have based on the state of
its qubits.

5.3 Quantum Process Algebras

An alternative method of verification of protocols involves using process algebras [48] to specify a pro-
tocol, and applying rules of the algebra to prove that the protocol is equivalent to a given specification
(or that it is not equivalent!). One notion of equivalence between two processes in a process calculus
is based on the existence of a bisimulation relation between them. The existence of the bisimulation re-
lation between two processes implies that both processes make exactly the same transitions between
their states. An alternative notion of equivalence is that of congruence. Two processes are congruent if,
using the congruence axioms and theorems of the process algebra, the first process may be reduced to
the second and vice-versa.

Attempts have been made to verify quantum protocols using classical process algebras. For exam-
ple, the BB84 Quantum Key Distribution protocol [9] has been verified by expressing it as a set of CCS
[44] formulae and testing it for bisimulation equivalence against a specification [45]. However, quantum
processes may be modelled using classical process algebras to a limited extent, as they do not capture
the non-classical dynamics of quantum computation.

In order to more succinctly model quantum processes, process algebras which combine classical
and quantum computation have been developed. These include Communicating Quantum Processes
[28], and the QPAlg process algebra [37]. Bisimilarity and congruence relations can be used for veri-
fication of QPAlg processes [38]. The DMC model described in Section 3.3 is quite similar to process
algebras. This means that a two-fold verification of DMC networks may be performed: verification
that the quantum network description meets a particular specification, and a subsequent verification of
epistemic properties using the logic.

The process algebraic approach to verification is clearly quite different to a logic-based approach
to verification. The process algebras also abstract away from the actual agents which participate in a
computation. As such, the addition of epistemic properties to quantum process algebras is in general a
difficult goal to achieve compared to that of adding them to already existing logic model checkers.
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Chapter 6

Conclusions

We have seen three approaches to modelling knowledge in quantum systems, and their application to
verification of epistemic properties of the Quantum Teleportation protocol. These approaches differ in
their treatment of knowledge and the way in which they model a quantum system.

The first approach to model knowledge in quantum systems, using Qubit Message Passing Envi-
ronments, is difficult to use for verification of quantum protocols. It has issues with its interpretation
of quantum knowledge. Additionally, quantum knowledge verifies epistemic properties which do not
hold in real-world systems.

The approach based on Distributed Measurement-Based Computation is a more sound approach -
it has no problems with its interpretation of knowledge, since all knowledge is regarded as classical
rather than quantum knowledge. The verification of properties of the Quantum Teleportation protocol
using this approach did not lead to the verification of any false properties, and no other difficulties were
encountered. The work based on this approach is a good starting point for further research.

Verification using the Dynamic Epistemic Quantum Logic based approach did not lead to any prob-
lems. However, the properties which may be verified using the logic are not useful models of knowl-
edge in multi-agent systems, as this approach is too abstract.

Modelling knowledge in quantum systems fits into a wider context of quantum program verifica-
tion, and should be used to complement the analyses of security properties used by these approaches.
The security of a protocol may be assured with a greater certainty by using several different approaches
to modelling attacks on the protocol.

6.1 Further Work

Further work based on the Distributed Measurement-Based Computation approach may include:

e Implementation of a model checker based on the existing published research. This implementa-
tion may be achieved without the necessity for further research.

e Verification of quantum protocols using an implementation of a model checker. The verification
may be achieved by simulating attacks on protocols by providing different network specifications
which model the actions of an eavesdropper or other malicious party.

e Addition of probabilities to the logic based on the probability of each measurement outcome. This
will allow reasoning about the probability of particular knowledge states arising. This will allow
the verification of properties such as “There is a 99.5% chance that agents will become aware of an
eavesdropper during the execution of the protocol”, or “An eavesdropper only has a 0.5% chance
of discovering all the bits of a key during the execution of a protocol”.
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