IMPERIAL COLLEGE LONDON

MSc. ADVANCED COMPUTING ISO 1

Accelerating Unstructured Mesh
Computational Fluid Dynamics on
the NVidia Tesla GPU Architecture

Image: Flow past a heated cylinder, computed using Fluidity
Source: http:/ /amcg.ese.ic.ac.uk/

Author: Supervisor:
Graham MARKALL Prof. Paul KELLY

Abstract

This report presents steps towards accelerating Fluidity, a general-purpose com-
putational fluid dynamics package. One portion of the code, an iterative solver,
is targeted for optimisation by using Graphics Processing Units (GPUs) to per-
form computations. A literature survey which examines the performance is-
sues of iterative solvers and optimisations which may overcome these issues on
classical and vector architectures is presented. Existing iterative solvers which
use GPUs for computation are surveyed to identify optimisations which may
accelerate our own solver implementation. The results of experimental inves-
tigations into improving an iterative solver which uses GPUs developed in a
previous work is presented. It is shown that the speed of this solver compares
favourably to the solver currently used in Fluidity, being able to solve large
systems up to an order of magnitude faster. Numerical accuracy of the solver
is shown to be limited, and its utilisation of the GPU solver shows room for
improvement. Possible directions for further work which seeks to overcome
these limitations is outlined.

Acknowledgements

e I would like to thank Paul Kelly, for his supervision of this ISO, and his
support and suggestions throughout.

e Francis Russell, for helping me get starting with using thehoff, and with
understanding the finite element method.

e David Ham, for his explanations of parts of the test program, which
helped me to understand its operation.

o Lee Howes, for helping me out with profiling on thehoff.

ii

Contents

1 Introduction 1
11 Background L. 1
12 RecentWork 3
1.3 Contributions & ReportOutline 3
2 Background 4
21 Introduction 4
2.2 Graphics Processing Units 4
2.3 The Conjugate Gradient Method 5
2.3.1 Preconditioningo o oL 6
2.3.2 Other Iterative Methods 8
24 Compressed Row Storage 8
25 Conclusion 9
3 Classical Architectures 10
31 Introduction 10
3.2 Sparse Matrix-Vector Multiplication 10
3.3 Performance Issuesin SpMV Kernels 11
3.4 Performance Optimisation of SpMV Kernels 11
341 Register Blocking Optimisations 12
3.42 CacheOptimisations 13
3.4.3 Matrix Reordering Optimisations 14
3.4.4 Parallel Optimisations 16
3.45 Other Optimisations 17
3.5 Summary of Classical SpMV Optimisations 17
36 Conclusion 18
4 Existing Implementations 19
41 Introduction 19
42 cuBLAS (NVidia, 2007a) 19
4.3 Concurrent Number Cruncher: A GPU Implementation of a Gen-
eral Sparse Linear Solver (Buatois et al., 2007) 20
4.4 Implementing the Conjugate Gradient Algorithm on Multi-core
Systems (Wiggers etal.,2007) 22
4.5 Sparse Matrix Solvers on the GPU: Conjugate Gradients and Multi-
grid (Bolzetal.,2005) 23
4.6 Implementing a GPU-enhanced cluster for Large-Scale simula-
tions (Lucasetal.,2007) 24

iii

47 Conclusions e

5 Experimental Investigations

51 Introduction
52 Preconditioning o L.
521 Background
522 Implementation.
523 Testing
524 FurtherWork
5.3 The BCRSMatrix Format
531 TestMatrices

5.3.2 Exploring the BCRS format

54 Conclusion

6 Conclusions and Further Work

6.1 Conclusions e
6.2 FurtherWork

References

iv

27
27
27
27
30
31
37
38
38
39
41

42
42
43

46

Chapter 1

Introduction

This report presents a literature survey and experimental exploration of oppor-
tunities to use Graphics Processing Unit (GPU) hardware to improve the perfor-
mance of an unstructured mesh Computational Fluid Dynamics (CFD) package.
This chapter explains the motivation behind the project, and outlines the spe-
cific contributions and conclusions of the study.

1.1 Background

Fluidity (Gorman et al., 2008) is a CFD code developed by the Applied Mod-
elling and Computation Group in the Department of Earth Science and Engi-
neering at Imperial College. The code is general purpose, which allows for a
wide range of uses. The include ocean and atmosphere modelling, and simu-
lation of fluidised beds. An interesting application of Fluidity is described in
(Shaw et al., 2008).

The code solves the Navier-Stokes equations (Salvi, 2002) on an unstruc-
tured, adaptive mesh. In an unstructured mesh, larger elements are used away
from the area of interest, or in areas where there is little variation in the solu-
tion. Using larger elements reduces the total number of elements in the mesh.
The reduction in the number of elements reduces the total amount of compu-
tation required.

Despite this optimisation, the simulation of complex models still requires
a large amount of computation. A simulation of tidal dynamics in the Baltic
Sea running on a dual Intel Xeon 2.8GHz processor required over two days to
complete. The performance of Fluidity is important because large simulation
times must be minimised.

The main structure of the Fluidity computation is shown in Figure 1.1. This
has been adapted from the more detailed code flow chart on page 158 of (Pig-
gott, 2006). The main loop consists of the following phases:

Mesh Generation. It may be necessary to generate a new mesh to maintain
the accuracy of the solution. If this is the case, then the new mesh is com-
puted, and a local stiffness matrix for each element is computed. The local
stiffness matrix specifies the contribution to the solution that an element
makes.

Optional
(IP\)/[:;rllla) Assembly Solver | | Update Output
. Phase Phase Solution Solution
Generation
Repeat

Figure 1.1: Overview of steps in the main loop of Fluidity.

Assembly Phase. In this phase a large system of simultaneous equations is
assembled. The system is assembled by performing an addto operation
for each element in the finite element mesh. The addto operation takes
as its input a local stiffness matrix which corresponds to a particular el-
ement, and the node numbers of the element in question. The addto
operation adds the values of the local stiffness matrix into the matrix of
coefficients at locations which correspond to the node numbers of the el-
ement. The addto operation may be called several times per element if
there are many terms present in the underlying equation, so performance
in this area is crucial.

Solver Phase. In this phase, the system of equations which was assembled in
the previous phase is solved. As the system of equations is very large
and sparse, a direct solution cannot be obtained efficiently. An iterative
solver must instead be used. Currently the Fluidity code makes use of
PETSc (Balay et al., 2006) to find the solution of the system. This phase
makes up a large proportion of the computations in the main loop of
Fluidity - therefore, the performance of this phase is also crucial.

Update Solution. As this stage, the change in the solution variables, and a new
timestep is calculated. Also, an error measure is calculated at this stage.

Output Solution. The current solution is written out to disk at this stage.

In the Fluidity package a test program is also included, called test_laplacian.
The test program solves a Laplacian equation over a 1 x 1 two-dimensional
domain. This problem is chosen as it is possible to compute the analytical so-
lution to the problem, which allows the error of the numerical solution to be
determined accurately. The main steps of the test program are shown in Figure
1.2.

Calculate Assemble
Read Input
Datap —] Shape] Global [~
Functions Matrix
Solve Calculate | | Output
System Error Solution

Figure 1.2: Main steps in the execution of test_laplacian.

Computationally intensive steps are the assembly of the global matrix, and
solving the system. The assembly phase functions very similarly to the as-
sembly phase of the main Fluidity program, building the system by repeatedly
calling the addto function. The solution phase also makes use of the PETSc
solver. However, the test program assembles a matrix which is symmetric and
positive definite, which allows the solver to use the Conjugate Gradient algo-
rithm (see Section 2.3). The main Fluidity code assembles matrices which are
not symmetric positive definite, which requires the use of the Generalised Min-
imum Residual (GMRES) algorithm (Barrett ef al., 1994) to solve the system.

1.2 Recent Work

Increasing the performance of the assembly and solution phases for the test
program by porting the addto code and the conjugate gradient solver to a GPU
has been investigated (Perryman & Kelly, 2008). Benchmarking the test pro-
gram using the GPU-based addto and solver codes showed that the speed of
the addto phase is doubled, and that the conjugate gradient solver runs eight
times faster than the PETSc conjugate gradient solver.

The benchmarks were executed using a version of the test program which
solved a slightly different problem than in the original test program. The orig-
inal test program produced a problem which required the use of a precondi-
tioner (see Section 5.2), which the GPU conjugate gradient solver did not im-
plement. Part of the work presented in this report describes the necessity and
development of a preconditioner for the GPU conjugate gradient solver.

The addto phase is not further examined in this report, as the scope of the
project has been restricted to improving the GPU conjugate gradient solver.

1.3 Contributions & Report Outline

The contributions of this report are:

e To provide a survey of optimisations used in increasing the performance
of iterative solvers for large sparse systems.

e To discuss which of these optimisations may be applied to accelerate por-
tions of Fluidity.

e To present an account of experimental investigations into two of these
optimisations: preconditioning, and an alternative matrix storage format.

e To suggest how other applicable optimisations may be further investi-
gated.

The remainder of this report has the following structure: Chapter 2 presents
relevant background information. Chapter 3 presents a survey of implemen-
tation techniques and optimisations for iterative solvers for classical and vec-
tor architectures. Chapter 4 presents a survey of existing solvers which use
GPUs. Chapter 5 presents experimental investigations based on optimisations
described in the previous two chapters, and outlines how further develop-
ments in these areas may proceed. Chapter 6 presents conclusions and a sum-
mary of future work.

Chapter 2

Background

2.1 Introduction

This chapter introduces relevant background information. The first part of this
chapter discusses the architecture of current GPUs, and a short comparison to
other current parallel architectures is made. The second part of the chapter
gives an overview of the conjugate gradient method, and the data structure
used by Fluidity for storing large sparse matrices.

2.2 Graphics Processing Units

The workload involved in generating realtime 3D graphics involves a large
amount of arithmetic operations, performed on large datasets. Due to this
requirement, modern GPUs have large amounts of memory bandwidth and
many processing cores.

Because GPUs are specialised to perform large amounts of arithmetic, there
is no need for many of the architectural optimisations present in modern CPUs,
such as branch predictors, cache, and prefetchers, etc. Instead, most of the
transistors can be used for units which perform arithmetic. Figure 2.1 shows a
very general comparison of the purpose of the transistors in a typical CPU and
a typical GPU. In the figure, orange represents transistors devoted to mem-
ory, yellow represents transistors devoted to control flow, and green represents
transistors which are dedicated to performing arithmetic. Larger areas repre-
sent more transistors.

Because of their large memory bandwidth and computational power, GPUs
are well-suited to performing computational tasks. To allow programmers to
utilise the GPU, manufacturers have released Software Development Kits (SDKs)
for the GPUs which they manufacture. NVidia has released the CUDA plat-
form (NVidia, 2007b), and AMD provides the Stream toolkit (Advanced Mi-
cro Devices, 2008). Unfortunately, code written using one SDK may not readily
be compiled using another SDK. In an attempt to standardise development for
GPU (and similar) architectures, the OpenCL framework was developed by
a consortium of manafacturers (Khronos Group, 2008). Using OpenCL, pro-
grammers can write programs which may be compiled to different platforms
without modification, including the NVidia and AMD GPUs.

Control ALU ALU =

ALU ALU

CPU GPU

Figure 2.1: Comparison of the architecture of a general purpose CPU with that
of a GPU. From (NVidia, 2007b)

OpenCL will also provide support for compilation to similar architectures,
which provide high levels of parallelism. These include the Sony, Toshiba and
IBM (STI) Cell processor (Gschwind et al., 2006), and forthcoming parallel ar-
chitectures including the Intel Larrabee architecture (Seiler et al., 2008), and
Sun’s Rock architecture (Tremblay & Chaudhry, 2008).

Instead of containing a large number of homogeneous cores, the Cell pro-
cessor includes one scalar processing unit (the Power Processing Element) which
acts as a controller for eight RISC processing units (the Synergistic Processing
Elements, or SPEs). Each of the SPEs has a local memory store which must be
explicitly managed by the programmer.

The Intel Larrabee architecture is a specialised x86 architecture, which is
extended with Larrabee-specific instructions. The Larrabee processor will in-
clude cores which are based on an embedded Pentium design. Each core will
have its own cache, and cache coherency is maintained across all cores.

The Sun Rock architecture is a general purpose CPU which implements the
SPARC instruction set. Sixteen cores make up the processor, which are each
capable of running two threads. The Rock architecture is targeted at high data
workloads, as well has high floating-point workloads.

The code written throughout the duration of this ISO is targeted at the
CUDA platform - the previous work (Perryman & Kelly, 2008) towards acceler-
ating Fluidity uding GPUs was written using CUDA, as the available hardware
was manufactured by NVidia. At the time of writing, NVidia has announced
that it will support OpenCL, but presently only CUDA is supported.

2.3 The Conjugate Gradient Method

The conjugate gradient method was originally presented in (Hestenes & Stiefel,
1952). The derivation of the method is not given here; instead, a brief descrip-
tion of the algorithm will be given. A full explanation of the method may be
found in (Shewchuk, 1994). The conjugate gradient method solves systems of
the form

where x is an unknown vector, b is a known vector, and A is a known matrix.
The algorithm only succeeds for matrices A which are symmetric, and positive
definite. An n X n matrix M is symmetric if forall i,j € 1...n, M;; = Mj;. The
matrix M is also positive definite if, for every non-zero vector v, vTMov > 0.

The algorithm solves the system by iterating through a loop, each iteration
moving closer to the correct solution. When the solution has been found to a
given accuracy, the algorithm terminates. Given known inputs A, b, a maxi-
mum number of iterations maxit, and an error tolerance €, the algorithm is as
given in Algorithm 1.

Algorithm 1: Conjugate Gradient Method

x=0;
r=>b— Ax;
d=r,

60 = Onew =¥ - 1;
while i < maxit & Sy > €2 % &y do

i=i+1;
q = Ad;
75’11’70.
0(— T‘ql
X =x+ad;
r=r-—aq;
5old—5newr
Opew =717
5}1(’7{)
p= Ootd ’
d=r+pd;

It can be seen that the method is composed mainly of dot products, vector
addition and scalar multiplication, and a matrix-vector multiplication. The first
line, x = 0, is the initial guess for the solution x. This may be set to something
other than the zero vector, for example if an approximation of some or all of the
solution is already known. However, it is sufficient to choose the zero vector
when no other information is known.

2.3.1 Preconditioning

The condition number of a matrix is a measure which can be calculated to de-
termine how “difficult” a system of equations based on the matrix is to solve.
Lower condition numbers indicate systems which are easier to solve. The iden-
tity matrix has the lowest condition number, a condition number of 1, as a
system of equations based on the identity matrix is essentially already solved.
There is a relationship between the condition number of a matrix and the num-
ber of iterations required to solve the system. Matrices with higher condition
numbers will generally require more iterations to solve.

The condition number of a matrix (and consequently the number of iter-
ations and time required to solve the system) can be reduced by applying a
preconditioner. The preconditioner transforms the system

Ax =D

into the system

M TAx=M"p (2.1)

which has an equivalent solution. The matrix M is chosen to approximate A.
The perfect choice of M would be M = A, so that M ~1A = I - this would solve
the system entirely. Unfortunately, to find M in this case would require solving
the system Ax = b, which is the problem we are trying to solve!

An issue with transforming the system in the manner shown in Equation
2.1, is that the matrix M~ 1A is generally not symmetric. An alternative trans-
formation which preserves symmetry must be used if the resulting system is
to be solved using the conjugate gradient method. A matrix E must be found
such that M = EET. The system Ax = b may then be transformed to:

E'AE T2 =E'b. (2.2)

The matrix E-'!AE~T is symmetric, so this system may be solved using the
conjugate gradient method. Once the solution to this system has been found,
the solution £ can be transformed to find the solution to the original system, x:

x=ET% (2.3)

The Jacobi Preconditioner

A very simple preconditioner, called the Jacobi, or diagonal preconditioner, con-
sists of choosing M = diag(A) (Barrett et al., 1994). This preconditioner is
straightforward to calculate and apply, but does not reduce the condition num-
ber of the matrix A to a great extent. An advantage of this preconditioner is that
the preconditioning matrix M need not be explicitly computed and stored.

The Symmetric Successive Over-Relaxation Preconditioner

A more refined preconditioner (which incorporates the diagonal preconditioner)
is the symmetric successive over-relaxation (SSOR) preconditioner (Barrett ef al.,
1994). The symmetric matrix A may be decomposed into a sum of matrices:

A=D+L+LT

where D is the diagonal, and L and L' are the lower and upper triangular
parts. The matrix M is chosen as:

M=o (G (Gr) (G ee)

where 0 < w < 2 is called the relaxation parameter. The SSOR preconditioner
may be derived from the matrix A and requires little work to compute.

Other Preconditioners

Throughout the ISO, the performance of only the Jacobi and SSOR precondi-
tioners have been evaluated. Other preconditioners exist which have a greater
effect on the condition number of the matrix, though they may require more

computation. As they were not evaluated, other preconditioners are not dis-
cussed here, but there are several examples presented in Chapter 10 of (Saad,
2003).

Preconditioning in the Test Program

The test program from Fluidity uses the SSOR preconditioner by default. How-
ever, this default choice can be over-ridden. Changing the preconditioner al-
lows the effect on the performance of the solver of each preconditioner to be
evaluated. Section 5.2.4 gives an account of changing the default precondi-
tioner to evaluate the performance of different preconditioners.

2.3.2 Other Iterative Methods

There are other iterative methods which overcome the limitations of the conju-
gate gradient method, and are able to compute the solutions of non-symmetric
and indefinite systems. These include the Bi-Conjugate Gradient Stabilised
(BCGSTAB) and Generalised Minimum Residual (GMRES) methods. A de-
scription of these, and other methods, may be found in (Barrett et al., 1994) and
(Saad, 2003). The Fluidity code uses the GMRES method for general systems
of equations.

The other iterative methods are built from similar operations to the conju-
gate gradient method - dot products, vector operations, and matrix-vector mul-
tiplication. If the conjugate gradient method can be efficiently implemented on
GPUs, then it is very likely that other methods can be implemented using GPUs
to obtain similar performance gains. Once the building blocks of the conjugate
gradient method have been developed, re-using some of the code will allow
the other methods to be developed with relative ease.

24 Compressed Row Storage

Fluidity stores matrices with large numbers of non-zero elements using a for-
mat which does not store the non-zeroes, to save space. The format used is
Compressed Row Storage (CRS) (Shahnaz et al., 2005). Instead of storing n? el-
ements, only 2nnz + n + 1 elements are stored, where nnz is the number of
non-zero elements and 7 is the dimension of the matrix. However, the CRS
format leads to inefficiency in accessing the elements of the matrix, as it re-
quires an indirection step for every access to a non-zero element in the matrix.
The format stores a sparse matrix in three arrays:

e val stores the values of the non-zero elements of the matrix in a floating-
point format.

e col_ind stores the column indices of the corresponding values in val.

e row_ptr is an integer array which stores the locations in val which start a
row.

To assist in conveying how the CRS format stores a sparse matrix, an example
will be given. Consider the matrix A:

511 S12 0 0 0

s21 S22 0 sy O

A— 0 S32 S33 0 0
0 0 0 S44 S45
0 552 0 0 555
0 0 0 0 565 Se6

OO O OO

where s;; represents a non-zero element. Figure 2.2 shows how the matrix A
would be stored using the CRS format.

Figure 2.2: CRS representation of the matrix A.

val S11 | S12 | S21 | 522 | S24 | S32 | S33 | S44 | S45 | S52 | S55 | Se5 | Se6

col ind | 1 2 1 2 4 2 3 4 5 2 5 5 6

[rowptr [1[3]6[8[10]12]

2.5 Conclusion

This chapter has discussed the architecture of GPUs and given a short compar-
ison to other architectures. In addition, the key points of the conjugate gradi-
ent method, preconditioning, and the CRS storage format have been presented.
The next chapter continues by discussing performance issues of iterative meth-
ods (like the conjugate gradient method) on classical architectures which have
been identified in the literature, and gives an overview of strategies which have
been implemented in order to mitigate the effects of these performance issues.

Chapter 3

Classical Architectures

3.1 Introduction

This chapter provides a brief examination of the issues involved in producing
high performance sparse iterative solvers, and the optimisations which may
be made to overcome these issues. The sparse matrix-vector multiplication
kernel is introduced, and its performance issues and potential optimisations
are discussed. As well as classical architectures, some optimisations for vector
architectures are discussed.

3.2 Sparse Matrix-Vector Multiplication

The most important computational kernel in iterative linear solvers is the Sparse
matrix-vector multiplication (SpMV) kernel (Barrett et al., 1994). The SpMYV is the
most computationally intensive operation in an iterative solver. Most of the
execution time of the main loop of a solver is spent inside the SpMV kernel.

An SpMV kernel which operates on matrix stored in CRS format (stored in
the variables row_ptr, col_ind and val) and a vector x, the result of which is
stored in the vector y, is implemented by the following code:

for(i=0; i<N; i++)
for(j=row_ptr[i]; j<row_ptr[i+1]; j++)
y[i] += vall[jl*x[col_ind[j1];

About 80% of the time taken by an iterative solver is spent within an SpMV
kernel, regardless of the architecture (Buatois et al., 2007). Because of the im-
portance of the SpMV kernel to iterative solvers, the remainder of this section
will focus its performance issues and potential optimisations. Other kernels
which are used in iterative solvers (e.g. the dot product) make up much less of
the execution time of the main loop, and do not suffer from performance issues
to the extent which the SpMV kernel does.

10

3.3 Performance Issues in SpMV Kernels

Traditionally the SpMV kernel shows poor performance - conventional imple-
mentations may only run at 10% of the maximum theoretical floating point
performance of the machine (Vuduc & Moon, 2005). In general, memory band-
width was found to be a major limiting factor (Williams et al., 2007). A recent
study of the performance of SpMV kernels (Goumas et al., 2008) identified the
following specific performance issues:

1. A key feature of the SpMV kernel is that its execution involves a large
number of load instructions relative to the number of floating point in-
structions which are executed. It is observed by (Goumas et al., 2008) that
the SpMV kernel performs O(n?) operations on O(n?) items of data, in
contrast with a matrix-matrix multiply, which performs O(n*) operations
on O(n?) items of data. This indicates that there is little temporal locality
in the SpMV kernel, so optimisations must focus on spatial locality and
vectorising memory accesses.

2. The kernel accesses each matrix element exactly once - as a result, there
is no temporal locality of accesses into the matrix. However, as each iter-
ation of the loops in the kernel access the arrays which store the matrix
sequentially, there is good spatial locality of accesses into the matrix.

3. Indirect memory references - The indices of the non-zero elements (stored
in row_ptr and col_ind) must also be loaded from memory when access-
ing the elements of the matrix. The value stored in row_ptr is used as
an offset into the val and col_ind arrays. This increases the amount of
computation and memory bandwidth required to load elements of the
matrix.

4. Accesses into the vector x (sometimes referred to as the source vector) are
irregular - there is poor spatial locality of accesses into the source vec-
tor. The access into the source vector follows the sparsity pattern of the
matrix. When the matrix sparsity pattern has a near-random structure,
accesses into the source vector may also exhibit poor temporal locality.

5. Short row lengths - if rows in the matrix have few non-zero elements
then little computation is performed in each trip of the inner loop. This
negatively affects performance as the ratio of instructions which perform
arithmetic to control flow instructions executed is decreased. Simply put,
the total efficiency of the computation is decreased.

6. Working set size - If the working set (comprised of the matrix, and the
source and destination vectors) is larger than the cache, then performance
is negatively impacted as portions of the working set must periodically
be flushed from the cache, and subsequently fetched from memory when
they are required later on in the execution of the kernel.

3.4 Performance Optimisation of SpMV Kernels

Many optimisations to overcome the performance issues of SpMV kernels have
been implemented and tested in recent years. These optimisations can be di-

11

vided into broad categories:
e Register blocking optimisations
e Cache optimisations
e Matrix reordering optimisations
e Parallel optimisations

Optimisations in each of these areas are identified and examined.

3.4.1 Register Blocking Optimisations

Register blocking optimisations aim to improve performance by reducing the
amount of indirection required when accessing elements of the matrix. This
can be achieved by storing elements of the matrix which are close to each other
together, and using a single indirection to access any element within this group.

A simple optimisation of this type was proposed in (Toledo, 1997). The
algorithm finds all the 1 x 2 blocks of non-zero elements in the matrix. The
matrix is represented as the sum of two matrices. One matrix consists of all the
1 x 2 blocks which were identified, and the other contains the remaining non-
zero elements. When the SpMV kernel executes, it can access the elements of
the blocked matrix using a single indirection for each 1 x 2 block of non-zeroes,
instead of requiring one indirection per non-zero. In order to better exploit this
optimisation, a heuristic algorithm which re-orders the matrix to maximise the
number of 1 x 2 blocks was developed (Pinar & Heath, 1999).

Toledo’s blocking algorithm may be generalised to blocks of arbitrary size.
The storage format which represents a matrix using these arbitrary blocks is
the Blocked Compressed Row Storage format (Shahnaz et al., 2005). The format is
a modification of the CRS format. Each block is stored as a dense matrix and
all its values are stored contiguously. As with CRS, BCRS stores the matrix in
three arrays:

e val is an array which stores the values of each block in a floating-point
format.

e col_ind stores the column indices of the (1,1) elements of the blocks
stored in val

e row_ptr stores the indices in col_ind and val which start a row of blocks.

In a sparse matrix there may be several values which are very close together
which do not make a complete block of the required size. If this is the case, then
the values may be stored as a single block, padded with zeroes. Computations
on this block will then perform some redundant operations such as multiply-
ing by the zero elements. The reduction in indirections usually outweighs the
cost of the additional computation. However, too much padding can have a
negative effect on performance (Goumas et al., 2008). If this is the case, the
amount of padding may be reduced by using a smaller block size, at the cost
of increased indirection.

Figure 3.1 shows how the matrix A (see Section 2.4) is stored using the BCRS
format with 2 x 2 blocks.

12

Figure 3.1: BCRS representation of the matrix A.
val | S11 | S12 | S21 | S22, | O O 0 Sog; | O 1 sz | O 0;
533 0 S44 0; 0|0 545 0; 0 552 00
55 | O | Se5 | See
’col,ind\l 3\1\3515Hrow,ptr\1\3\6‘

(Pinar & Heath, 1999) also presented an algorithm which maximises the
density of the blocks by reordering the matrix. This is also a generalisation of
the algorithm which maximises the 1 x 2 blocking.

3.4.2 Cache Optimisations
Cache Blocking Optimisations

Cache blocking optimisations are applicable when the source and destination vec-
tors are too large to fit into the cache (Williams et al., 2007). This scenario occurs
for sufficiently large matrices. A cache blocking scheme attempts to keep a por-
tion of the source vector in the cache by splitting the matrix up into tiles, and
aims to increase the temporal locality of accesses into the source vector. The
values of the result vector may be partially computed for each tile in turn.

Figure 3.2 illustrates an example of a tiling of a matrix into sixteen tiles,
along with the source and destination vectors. The number of each tile indi-
cates a possible order in which the SpMV kernel could work on the tiles. When
the kernel is operating on tiles 1-4, only the top quarter of the destination vec-
tor is accessed. When the kernel operates on tiles 5-8, the next quarter down
is is accessed. The temporal locality of accesses into the destination vector is
also improved in this case. To achieve optimal performance, the portions of the
vector must be able to fit in the cache.

Source vector, x

1 2 3 4
>
o
g
S 5 6 7 8
>
=]
S
g
g 9 10 11 12
a
13 14 15 16

Sparse matrix, A

Figure 3.2: A possible tiling of a matrix into 16 tiles, with the source and desti-
nation vectors.

However, it can be difficult to determine an optimal tile size (Yelick, 2008).

Methods to determine the tile size include profiling different tile sizes, or using
a heuristic (Williams et al., 2007).

13

Cache blocking optimisations are generally less successful than the other
types of optimisation described in this section. Matrices which have a random
or near-random structure are the most suitable for this optimisation. Addi-
tionally, combining cache blocking with other optimisations usually results in
lower performance than applying a single optimisation (Yelick, 2008).

Prefetching

Modern CPU microarchitectures implement a prefetcher in their hardware (Williams
et al., 2007). The prefetcher detects regular memory access patterns and pre-
dicts the locations of future memory accesses. Data is fetched from these loca-
tions immediately into the cache. When this data is required by an instruction,

the processor will not have to wait for the data to fetched from main memory

as it has already been pre-fetched.

As the SpMYV kernel accesses the matrix in a regular fashion (working se-
quentially across the three arrays), the prefetcher is able to detect the simple
linear access pattern and prefetch the correct portions of the arrays. However,
the access into the source vector follows a random pattern, which the hardware
prefetcher cannot correctly predict.

A software prefetcher can be used to prefetch the required portions of the
source vector into the cache before they are required, if some information is
known about the sparsity structure of the matrix. For example, if the matrix
non-zeroes are all close to the main diagonal, then it is possible to infer that
when the SpMV kernel is working on rows near the top of the matrix, the en-
tries near the start of the source vector will be required. When the kernel is
operating near the bottom of the matrix, entries closer to the end of the source
vector will be required.

Investigation into software prefetching found that it provides performance
gains on the Intel Clovertown and Sun Niagara2 architectures, even though
these architectures implement a hardware prefetcher (Williams et al., 2007).
On the Intel architecture, prefetching brings data first to the L2 cache. An-
other hardware prefetcher fetches data into the L1 cache. Using the software
prefetcher provided a mechanism for the required data to be placed directly
into the L1 cache. On the Sun Niagara2, the hardware prefetcher only brings
data into the L2 cache. Therefore, the software prefetcher was able to provide
in increase in speed by bringing the data directly into the L1 cache.

3.4.3 Matrix Reordering Optimisations

Reordering optimisations improve the spatial and/or temporal locality of the
source and/or destination vectors throughout the matrix multiply. A reorder-
ing may impose some structure on a matrix which previously was not present.

Commonly-used reordering algorithms are the Cuthill-McKee (CM) algo-
rithm, and the Reverse Cuthill-McKee (RCM) algorithm (Cuthill & McKee, 1969),
which seek to minimise the bandwidth of the matrix. The bandwidth is min-
imised by reordering the rows and columns so that the non-zeroes of the matrix
are as close to the main diagonal as possible.

This ordering increases the spatial and temporal locality of accesses to the
source vector. When the dot product of each row of the matrix with the source
vector is computed, the entries in the source vector which are accessed will

14

be much closer together, which increases the spatial locality. When the SpMV
kernel operates on subsequent rows, the portion of the source vector which is
accessed will overlap with the portion which was accessed when computing
the current row. It is more likely that elements of the source vector which were
accessed recently will be re-accessed. This increases temporal locality.

An example of the effect of the Reverse Cuthill-McKee ordering is given in
Figure 3.3. Figure 3.3(a) shows the sparsity pattern of the original matrix. Fig-
ure 3.3(b) shows the sparsity pattern of the matrix after reordering. In this case,
the original matrix bandwidth was 80. The reordered matrix had a bandwidth
of 18, which is a significant reduction.

T R , v F ¥y
e : . . Ve
”35! oAt e e ¥ Foe
‘ s * rre .. e T, ol .
igé PR - . - ‘TR
- * + o - *
”ﬁf‘ Booh + oy, * :‘:i "“’2: o 8 b
* - + o
O XN . : S
TS s S ’ AR
RS TR S . MO S X]
3, ", . + x "84 "+ ¢
. 1 4, W e . + b N
. e 3 K2 A
PO - L it S ¢ é .
+a s) - $50 o ’i%z :,%
* FERE SR " s . . .
$+ ig»’g% * - i }a;g o 1
A R - G Y
- ”g@g’ wt s o* . Al
. % e JSwet L
% oo B,
Lo * * + t3 E gy :3? 3
: . oo SR R
. . % B e A
n . A A A "%!%!
LR et ot . NN “:,&sg:z
o . o B . ¥ttt
(a) Pre-RCM (b) Post-RCM

Figure 3.3: A sparse matrix before and after Reverse Cuthill-McKee reordering.

Another algorithm which may be used is the Column Count algorithm,
which sorts the matrix rows by the number of non-zeroes in each row (as used
in the ITPACK sparse matrix storage format (Kincaid & Young, 1988)). This
algorithm has been shown to be useful on vector machines (D’Avezedo et al.,
2005) when the compressed row storage format is used. A performance bene-
fit is provided as a vector machine must work on many rows simultaneously
to achieve high performance. If the machine is operating on rows of differ-
ent lengths, processors which are working on shorter rows will complete their
workload first. These processors must then wait for the other processors which
are working on longer rows to complete before they can continue with a new
row.

It has been suggested that on shared-memory multiprocessors, reorderings
such as the Lin-Kernighan algorithm (Lin & Kernighan, 1973), Prim’s algo-
rithm and the nearest-neighbour algorithm (Cormen et al., 2001) can improve
the spatial and temporal locality of accesses into the source vector (Pichel ef al.,
2004). These algorithms all reorder the matrix by treating it as the connectiv-
ity matrix of a graph, and creating an ordering which minimises the spanning
tree of the graph. Benchmarks performed on various shared-memory multi-
processors showed that using the Lin-Kernighan algorithm could improve the
performance of the cache whilst the SpMV kernel is executing, reducing the
miss rate by up to 20%.

15

3.4.4 Parallel Optimisations

There are many ways in which parallel processing can speed up the SpMV ker-
nel. Parallel optimisations exploit parallelism present in the SpMV kernel. On
shared memory architectures, optimsations such as thread blocking allow mul-
tiple cores/processors to work on a portion of the problem. Message passing
architectures require the problem to be partitioned, and portions of the matrix
distributed across multiple nodes.

Thread Blocking

The workload may be divided between several threads, an optimisation called
Thread Blocking. The matrix may be partitioned row-wise or column-wise, and
each thread computes the result for one partition. It is preferable to partition
the matrix row-wise as it is more straightforward to implement (Williams et al.,
2007). In row-wise partitioning, only one thread works on a particular element
of the result vector; when the matrix is partitioned column-wise, partial results
for each element of the destination vector are computed by each thread and
must be reduced. Rather than allowing each thread to work on an equal num-
ber of rows, a more optimal partitioning can be determined by allowing each
thread to work on an equal number of non-zeroes (Williams et al., 2007).

Thread blocking is a simple example of a scheme exploiting parallelism in
the SpMV kernel. Modifications to the basic thread blocking scheme consist
of alternative partitionings of the matrix, or alternative ways to distribute the
computation.

Partitioning

On message passing architectures, it is necessary to split the matrix into par-
titions which are stored on separate nodes. Each node computes the portion
of the result which depends upon the portion of the matrix which it owns. As
with thread blocking, partitioning the matrix by rows is an option. However,
other partitioning schemes can reduce the storage requirements for each node.
The Reverse Cuthill-McKee algorithm may be applied before partitioning
takes place to decrease the storage requirements (Yelick, 2008). Because the
elements of the matrix are near the main diagonal after application of the algo-
rithm, only a portion of the source vector is required by each individual node.
As an example, consider the matrix after reordering shown in Figure 3.3(b).
One possible partitioning could be to divide the matrix between two nodes,
the first operating on the top half of matrix, and the second working on the
bottom half of the matrix. Before the RCM algorithm is applied, each node
would need to store the whole source vector, as the non-zero elements in the
top half of the matrix span the entire width of the matrix. After the algorithm
is applied, the first node only requires just over half of the source vector to
be stored. Similarly, the second node needs to store just over half of the total
source vector, although it requires the part of the vector towards the end.

Vector Architectures

As well as classical architectures, vector architectures are used for solving large
systems. On vector architectures, the Jagged Diagonal Storage (JAD) format

16

(Shahnaz et al., 2005) is often used as it allows the machine to perform the
same operation on many elements of the matrix at once, which is required for
high performance (Tiyyagura et al., 2006).

Performance optimisation on vector machines can be obtained by modify-
ing the SpMV kernel so that the computation is performed on more than one
diagonal of the JAD format. This exposes parallelism in the kernel, which helps
to improve overall performance as the utilisation of processors in the vector
machine is increased. Benchmarking showed that kernels operating on five di-
agonals simultaneously achieved an increase in floating-point operations per
second (FLOPs) of approximately 3.35 times.

Additionally, speedups were obtained by storing partial results of the com-
putation in vector registers. Vector registers are small areas of storage very close
the the processing units, which can be accessed more quickly than main mem-
ory. Using the registers can also increase the performance of the SpMV kernel.

3.4.5 Other Optimisations

Other optimisations which do not fit into these broad categories have also been
suggested in the literature. These optimisations include:

e (Goumas et al., 2008) propose that the pressure on the memory can be
alleviated by using the smallest data types possible, thereby reducing the
total size of the dataset. For example, if double-precision accuracy is not
required for all parts of the computation, using single-precision values
can reduce the storage required by each value from 8 bytes to 4 bytes.
Additionally, if the number of non-zeroes and degree of the matrix does
not exceed 65535, it is possible to use the short int type for the row_ptr
and col_ind arrays in the CSR format. This reduces the storage required
for these arrays from 4 bytes per element to 2 bytes per element.

e The SpMYV kernel consists of two loops: the outer loop iterates over row_ptr,
and the inner loop iterates over val and col_ind. The kernel may be
rewritten so that the outer loop iterates through the non-zero values of
the matrix. Although a nested loop is still used, this optimisation often
results in higher performance for a serial SpMV kernel (Williams et al.,
2007).

3.5 Summary of Classical SpMV Optimisations

The optimisations presented will be reviewed. Additionally, their suitablility
to the GPU architecture must be examined in order to determine the direction
of future development of the GPU-based SpMV kernel and iterative solver.

Register Blocking. Memory bandwidth utilisation is maximised on NVidia
GPUs when data is accessed sequentially (NVidia, 2007b). As the BCRS
format stores the elements of each block in contiguous memory, it is pos-
sible that the memory access pattern throughout the execution of the
SpMV kernel will be more favourable when BCRS is used than when
CRS is used. In the CRS format, the elements which would make up a
block are not stored contiguously.

17

Matrix Reordering. As the Cuthill-McKee algorithm pushes all the non-zero
elements towards the main diagonal, it may increase the number of el-
ements in the source vector which are accessed contiguously through-
out the execution of the SpMV kernel. Therefore, the performance of the
SpMV kernel (and the solver in general) when using this reordering of
the matrix should be evaluated, and compared to the performance when
no reordering is implemented.

Cache Optimisations. As there is no hardware-controlled cache on NVidia
GPUs, there is little utility for optimisations which seek to increase the
cache hit rate. However, as each multiprocessor on the GPU has a 16KB
shared memory which can be explicitly controlled by the programmer
(NVidia, 2007b), it is possible that a prefetcher which brings data into
shared memory may provide some performance benefit. As the size of
the shared memory is very limited, neither the matrix nor the source
vector will fit completely in the shared memory. Because access to the
matrix follows a regular pattern, the GPU memory performance will not
be impacted, so the matrix is not a good candidate for being prefetched.
However, access to the source vector follows a random pattern, which
will impact upon the memory performance of the kernel on the GPU. Al-
though the source vector cannot fit into the shared memory, the portion
of the source vector required for each row of the matrix can be reduced
by applying the Cuthill-McKee algorithm to the matrix.

Parallel Optimisations. Thread blocking is already implemented by the pro-
totype GPU SpMV kernel (Perryman & Kelly, 2008). Partitioning the
matrix is currently unnecessary as the code has only been developed to
utilise a single GPU. For extremely large problems, multiple GPUs will
eventually be required, as the whole working set will not fit inside the
memory of a single GPU. At this stage, partitioning should not yet be
investigated, but will be essential in the future if the GPU-based kernel
is to utilise multiple GPUs. The JAD format may be investigated, but its
investigation should not be regarded as a high priority for developing a
fast GPU-based SpMV kernel and iterative solver. Implementing the JAD
format would require extra development effort, as it is not the matrix for-
mat natively supported by Fluidity. Also, implementing the JAD format
in Fluidity may introduce inefficiency to other areas of the computation.

3.6 Conclusion

This chapter has presented a review of common optimisations found in the
literature for optimising SpMV kernels on classical and vector architectures.
Techniques which may be amenable to improving the performance of a GPU-
based SpMV kernel and iterative solver have been identified. The next chapter
continues to identify possible optimisations, by studying recent implementa-
tions of iterative solvers which use GPUs for computation.

18

Chapter 4

Existing Implementations

4.1 Introduction

In this chapter, recent implementations of solvers which use GPUs for compu-
tation are surveyed and evaluated. The optimisations implemented are exam-
ined and evaluated, in order to identify the optimisations which will bring the
highest performance gains to a GPU-based solver. The CuBLAS library is also
examined, as it provides kernels which could potentially be used in the de-
velopment of an iterative solver. Additionally, an implementation of the multi-
frontal method which utilises GPUs is examined - however, it is shown that the
multifrontal method should not currently be pursued. This chapter concludes
by giving a summary of the optimisations used in these implementations, and
identifies which should be investigated further.

4.2 cuBLAS (NVidia, 2007a)

NVidia has produced an implementation of a subset of the BLAS (Lawson et al.,
1979) functions which has been implemented using CUDA. BLAS is an Applica-
tion Programming Interface for libraries which perform linear algebra functions,
or kernels. The BLAS routines are split into three levels:

Level 1 contains operations which are performed on vectors. These operations
include vector addition, multiplication of a vector by a scalar, and dot
products, amongst many others. An example of a Level 1 kernel is the
daxpy kernel, which computes the operation

Y—ax—+y

using double precision arithmetic, where « is a scalar, and x and y are
vectors.

Level 2 contains matrix-vector operations, which operate on a matrix and one
or more vectors. This level includes matrix-vector multiplication, and
solving Ax = b where A is a triangular matrix. An example of a Level 2
kernel is the dgemv kernel, which computes the operation

19

y «— aAx + By

using double precision arithmetic, where « and B are scalars, A is a ma-
trix, and x and y are vectors.

Level 3 contains matrix-matrix operations, which operate on more than one
matrix. This includes matrix-matrix multiplication amongst other opera-
tions. An example of a Level 3 kernel is the dgemm kernel, which computes
the operation

C «—aAB+ BC

using double precision arithmetic, where « and B are scalars, and A, B
and C are matrices.

This library has been developed to allow the GPU to be used to perform
linear algebra computations without the programmer having to interact with
the CUDA environment. Because the BLAS kernels are standard, the program-
mer may take an existing code which uses the BLAS kernels and modify it to
perform linear algebra computations using the GPU with minimal effort.

Because linear iterative solvers (such as the conjugate gradient method) are
made up of linear algebra operations, it would be expected that it is possible to
replace the calls to BLAS functions in the solver to calls to CuBLAS. This would
allow experimentation with using a GPU to accelerate the solver very easily.

Unfortunately, CuBLAS only supports dense matrix formats. Therefore,
it cannot be used to implement a solver which is suitable for the systems of
equations which arise in Fluidity - these systems are very large and sparse,
and must be stored in a sparse matrix format.

4.3 Concurrent Number Cruncher: A GPU Imple-
mentation of a General Sparse Linear Solver (Bu-
atois et al., 2007)

This paper describes the implementation of a Jacobi-preconditioned conjugate
gradient solver which uses the GPU for computation. This solver is imple-
mented for the CPU, and AMD-ATI and NVidia GPUs. Floating point compu-
tations are performed in single precision.

The solver supports both the CRS and BCRS storage formats. When the
BCRS format is used, a choice is available between 2 x 2 blocks and 4 x 4
blocks. The benchmarks presented in the paper show that optimal perfor-
mance is achieved on nVidia cards when the 4 x 4 block size is used. However,
for more sparse matrices, the filling ratio of the 4 x 4 blocks may drop to such
a low level that a 2 x 2 block size may offer better performance. The example
matrices presented do not show very high filling ratios; The 2 x 2 block size
showed a filling ratio of 50%, and the 4 x 4 block size showed a filling ratio of
29%.

The implementation exploits the capability of nVidia GPUs to fetch up to
four single precision floating point values at once, by using the float4 data

20

type (NVidia, 2007b). When the 2 x 2 block size is used, each block is stored as
a single float4 vector. When the 4 x 4 block size is used, the blocks are stored
as four 2 x 2 sub-blocks each of the float4 type. This maximises the amount
of data which can be retrieved in a single fetch.

The 2 x 2 block size is optimal for reading the coefficients of the matrix,
allowing four values to be fetched simultaneously. However, it is sub-optimal
for reading and writing the source and destination vectors as only two corre-
sponding elements may be read /written in a single operation. The 4 x 4 block
size is optimal for reading and writing the vectors, as it allows a full four ele-
ments to be read /written in a single operation. This may explain why the best
performance was achieved using the 4 x 4 block size.

The CNC implements the Reverse Cuthill-McKee reordering, but testing
showed that this had no effect upon the performance of the solver. The reason
for this is unknown - however, it is shown that implementing the reordering
does not significanly affect the fill rate of blocks when using the BCRS format.

The dot product between two vectors is computed in parallel in this imple-
mentation. Each thread multiplies a pair of elements from the source vectors
and stores the result. This leads to a number of partial results being stored in
contiguous memory locations. Each thread of the reduction kernel is able to re-
duce four values with a single fetch by treating intermediate results as a single
float4 vector.

The saxpy (Similar to the daxpy operation, but with single-precision arith-
metic, see Section 4.2) operation is parallelised in this implementation by each
thread computing a single element of the result, y. It is stated that in order for
this operation to be efficient, there must be an order of magnitude more threads
than there are processing units. Because there is a one-to-one correspondence
between elements and threads, there must be an order of magnitude more el-
ements than there are processing units. As an example, on an NVidia 280GTX
GPU there are 240 processing units, so for maximum efficiency the length of
the result vector must be an order of magnitude greater than 240.

The results presented show that the preconditioned conjugate gradient method
executes up to six times faster on a GPU than on a CPU. The sparse matrix-
vector multiplication executes approximately four times faster on a GPU than
on a CPU. The SpMV operation shows less speedup because its floating-point
throughput is restricted by the low levels of spatial and temporal locality when
accessing elements of a matrix stored in a sparse format.

A comparison of the results for the GPU solver using CRS and BCRS shows
a large performance improvement when using BCRS compared to CRS. BCRS
4 x 4 was shown to be approximately 50% faster than BCRS 2 x 2 on NVidia
and ATI GPUs. Additionally, BCRS 2 x 2 was shown to be 300% faster than
CRS on NVidia GPUs.

Future work based on CNC includes modifying the solver to support par-
allelism across multiple GPUs, and clusters of multiple PCs with GPUs. Other
methods are also to be implemented using the CNC framework, such as the
GMRES method. Implementing these methods will increase the applicability
of CNC, as they allow systems to be solved which are not symmetric or positive
definite.

21

4.4 Implementingthe Conjugate Gradient Algorithm
on Multi-core Systems (Wiggers et al., 2007)

A parallel implementation of the conjugate gradient algorithm for multicore
CPUs and for GPUs is described. The motivation for this implementation is
to speed up the processing of Digital Optical Tomography (DOT) data, which
requires a large set of linear equations to be solved.

This implementation uses a matrix stored in a symmetric CRS format. This
is similar to the CRS format, but saves space when storing a symmetric matrix
by only storing the upper or lower triangle of the matrix.

As the sparse matrix-vector multiplication operation of the solver is the
most time consuming part of the conjugate gradient solver, the authors chose
to focus on finding an efficient implementation of this algorithm for the CPU
and GPU. Their attempts are focused on increasing the spatial and temporal
locality of data in the algorithm.

Several methods of splitting the matrix up into parts to be processed sepa-
rately are discussed. Figure 4.1 gives a graphical representation of the splitting
mathods discussed.

e The even-odd split divides the direct neighbours of the matrix into two
different sets. This splitting requires the results of two sets to be com-
bined, and results in a large numerical error. Due to the large numerical
error, the number of iterations required for convergence doubles. Because
of this poor performance, the even-odd split is not discussed further.

e The block row split divides the matrix into two parts, an upper and a
lower part. The symmetry of the matrix is lost when using this splitting,
so twice the amount of storage is required to store the two sub-matrices
in CRS format.

e The third splitting discussed is the submatrix split, which splits the ma-
trix into several square submatrices. This splitting retains the symmetry
of the system of equations, and does not introduce large numerical errors.
This splitting was found to be the most efficient for the CPU implemen-
tation.

A B C

Figure 4.1: Various ways to split a matrix, from (Wiggers et al., 2007). A: Even-
odd split. B: Block row split. C: Submatrix split.

The Reverse Cuthill-McKee algorithm is used to re-order the matrix when
it is implemented on a CPU. By moving most of the elements close to the diag-
onal, the algorithm was expected to improve spatial locaility. However, there is
no comparison of the performance of the solver between the re-ordered matrix
and the original matrix ordering.

22

It is inefficient to distribute the processing of parts of a single row across
multiple threads on the GPU. Instead, the GPU implementation uses one thread
for each row of the matrix in the SpMV kernel. Instead of using the Reverse
Cuthill-McKee reordering on the GPU, the matrix is re-ordered using the col-
umn count algorithm. This improves performance because threads which ex-
ecute on the same multiprocessor must all execute the same instruction (Lind-
holm et al., 2008). If individual processors reach the end of a row before other
processors on the same multiprocessor, then they must stay idle until all pro-
cessors have reached the end of the row. When the rows are ordered by the
number of non-zeroes, all the processors in one multiprocessor will complete
at the same time or very close together.

The performance of the solver was tested using a single system of equa-
tions with matrix dimensions of 138,324 x 138,324, of which approximately
2.5 x 10° elements were non-zero. The GPU implementation of the solver was
found to run approximately 2.56 times faster than the CPU implementation.
However, it is stated that the relative error of the GPU implementation is higher
than the CPU - this is likely to be due to the single precision arithmetic used by
the GPU. In order to obtain a similar relative error to the CPU implementation,
the time required by the GPU implementation is similar to the time required
by the CPU implementation.

The speed of the GPU implementation was limited by the memory band-
width. Itis stated that using the “software controlled caches” (shared memory)
of the GPU will relieve the pressure on the memory bandwidth, thus increas-
ing the performance. However, this would require a change to the conjugate
gradient algorithm which was not implemented. The required changes to the
algorithm are not discussed, but it is thought that this could mean reordering
the matrix using an alternative algorithm. Future work may involve imple-
menting these changes.

4.5 Sparse Matrix Solvers on the GPU: Conjugate
Gradients and Multigrid (Bolz et al., 2005)

This paper describes the implementation of a conjugate gradient solver on the
GPU to solve the Poisson equation (V?u = f), with Neumann boundary con-
ditions. This is similar to the problem solved by the test program.

A short description of the approach to the implementation is given, which
views the GPU as a stream processor (Khailany et al., 2001). The gather op-
eration of a stream processor is implemented by fetching random-access data
into the shared memory of a multiprocessor, which is referred to as a “saved
stream”. This hides the high latency of true random memory access on the
GPU. There is also mention of loading four elements simultaneously using
wide data types. It is likely that the float4 data type is used to achieve this,
as in the Concurrent Number Cruncher. An efficient parallel sum-reduction al-
gorithm is presented, which, similarly to other implementations, reduces four
elements per thread per iteration.

The matrix is stored in a modified CRS format in this implementation. The
diagonal terms will always be non-zero for problems of Poisson’s equation, so
the diagonal terms are stored sequentially in a vector for fast access. The off-

23

diagonal non-zero terms are stored in a CRS format. When a diagonal term is
read, the vector is accessed, and when an off-diagonal term is read, the CRS
data structure is consulted. The rows of the matrix are sorted by the number
of non-zeros in this implementation, for a similar reason to the one given in
(Wiggers et al., 2007).

An efficient implementation of and SpMV kernel is presented, which ex-
ploits the ability to access the diagonal terms directly, without using the in-
direction of the CRS structure. Since the destination vector is read from and
written to, it must be ordered in memory so that a trade-off between efficient
read operations and efficient write operations is achieved.

Performance results state that the implementation of the conjugate gradi-
ent solver is able to perform approximately 110 iterations per second using an
NVidia Geforce FX card. Performance is thought to be limited by the SpMV
product causing cache thrashing, due to its random pattern of memory access.

4.6 Implementinga GPU-enhanced cluster for Large-
Scale simulations (Lucas et al., 2007)

This paper describes the implementation of the multifrontal method using the
GPU. Unlike the other implementations examined, this implementation does
not execute the majority of the solver on the GPU, but instead uses the GPU as
a co-processor to execute the most computationally-intensive operations. The
multifrontal method is an important solver in Mechanical Computer Aided
Engineering (MCAE) applications, as it is more reliable than iterative solvers,
which may not converge for the systems which arise in this area. The multi-
frontal method (Duff & Reid, 1983) is an algorithm to factorise sparse symmet-
ric matrices by decomposing the process into factorisations of smaller matrices.
The algorithm exploits the fact that there are no dependencies between certain
parts of the solution.

To solve the system it is sufficient to perform all computations using single
precision arithmetic. The format which the matrix is stored in is not discussed
- however, it is likely that some form of compressed storage is required, as the
test problem consisted of 235,692 equations. Storing a sparse matrix of this size
using a dense format would have wasted a large amount of memory.

It is stated that only the larger frontal matrices are factored on the GPU.
Because of the overhead of transferring the matrix to the GPU and invoking
a kernel, and then transferring the result back to main memory, it is faster to
factor small matrices on the CPU. As the larger frontal matrices represent a
significant proportion of the workload, it was possible for the GPU to take on
65% of the total factor operations whilst only factoring the 60 largest matrices.

The criteria for executing the factorisation of a matrix on the GPU are that
it has a size greater than 127, or if its leading dimension (size plus degree)
was greater than 1023. These criteria were determined by measuring the time
taken to factor matrices of varying sizes on the CPU and GPU. It was found
that as the sparsity of the matrix increases, the speedup offered by the GPU in
factoring the matrix decreased.

Since the frontal matrices are dense, the CuBLAS routine sgemm was used
to factorise them. This routine was chosen as it was able to achieve over 50%

24

of the peak floating-point performance of the GPU. It is unlikely that writing
a routine from scratch to perform the same operation would outperform the
CuBLAS routine without requiring a lot of work to tune the routine.

An overall speedup of approximately 1.97 was obtained for the CPU-GPU
solver compared to using the CPU alone. Although this is a relatively small
performance improvement compared to the speedup presented in other papers
surveyed, it is a significant speedup which halves the execution time of the
solver.

The multifrontal method is a very different approach to the iterative meth-
ods used in Fluidity and the other papers surveyed, and it is not considered
to be worthwhile investigating. The multifrontal method is (like the conjugate
gradient method) restricted to symmetric matrices. Because of this restriction
it would be suitable to solve the systems which arise in the test program, but
would not be able to solve the non-symmetric systems which arise in the main
Fluidity package. Additionally, no steps have been taken towards using the
multifrontal method in Fluidity, so further work would be required to extend
Fluidity to use the multifrontal solver. This contrasts with iterative methods,
which are already used in Fluidity, so it is straightforward to use one iterative
method in place of another.

4.7 Conclusions

There are a number of areas which have been investigated in the literature
which have so far not been explored with the Fluidity GPU solver. These areas
are:

Preconditioning. (Buatois et al., 2007) implemented a preconditioned conju-
gate gradient method. Presently, there is no preconditioning implemented
in the GPU solver of Fluidity. The Jacobi preconditioner (as used in the
paper) would be straightforward to implement, as it requires no calcula-
tion and a minimal amount of extra memory. Other preconditioners, such
as the SSOR preconditioner should also be evaluated. However, other
preconditioners require more storage space and computation to generate
the preconditioner. A good preconditioner will strike a balance between
the computation and storage requirements of the preconditioner, and the
reduction in the number of iterations to convergence.

Matrix Storage. CNC (Buatois et al., 2007) uses both the CRS and BCRS for-
mats to store the matrix, and showed the best performance using the
largest (4 x 4) block size. (Wiggers et al., 2007) used a symmetric CRS
format, which requires just under half of the storage space of the CRS
format for a symmetric matrix, and may potentially increase perfomance
by allowing a larger portion of the matrix to fit in a cache memory due
to its reduced size. In (Bolz et al., 2005) a modified CRS format is used,
which exploits the structure of the matrices generated by the finite ele-
ment method for Poisson problems. In Fludity, only a standard CRS for-
mat is used. As large performance gains were seen with the BCRS format
in CNC, it is important to investigate the format to determine if it could
also lead to performance gains for the Fluidity solver. The modified CRS
format which stores elements of the diagonal contiguously may lead to a

25

small increase in performance in Fluidity, as it allows for the diagonal el-
ements to be accessed without the indirection. As the performance gain
is likely to be small, this should only be investigated if BCRS offers no
speedup, as it would be difficult to implement in conjunction with BCRS.

Matrix Reordering. (Wiggers et al., 2007) used the column count (sorting by
the number of non-zero entries) algorithm for the GPU implementation
of the solver, and the reverse Cuthill-McKee algorithm for the CPU solver.
At present the Fluidity GPU solver does not reorder the matrix before
solving. These re-orderings may be implemented in the solver in order to
determine their effect upon the performance of the solver. Although the
reverse Cuthill-McKee algorithm did not affect the fill rate of the blocks
in BCRS, moving the non-zeroes as close to the diagonal as possible may
improve the spatial and temporal locality of values in an SpMV product
operation. Alternatively, the column count reordering may allow threads
which are close to one another to take similar branches (due to having
similar numbers of elements to work on), which would improve perfor-
mance by avoiding processors idling.

Single-precision arithmetic. (Perryman & Kelly, 2008) states that the conver-
gence of the conjugate gradient solver in Fluidity is poor. However, the
papers reviewed have achieved convergence using single-precision arith-
metic. This does not necessarily mean that there is a problem with the
GPU-based solver - it is possible that the systems generated by the test
problem are difficult to solve, whereas the authors of the papers would
have picked systems which are easier to solve, in order to demonstrate
the effectiveness of their solvers (see the next chapter for more informa-
tion on the convergence of the GPU-based solver). As current (and pos-
sibly future) GPUs only have a small number of double-precision pro-
cessors compared to the number of single-precision processors, it is im-
portant to explore the possibility of executing as much computation in
single-precision as possible, to increase the amount of parallelism in the
execution of the solver.

Vectorising. (Buatois et al., 2007) and (Bolz et al., 2005) used the float4 data
type in order to read four single-precision values from memory concur-
rently. This is currently not possible to implement in the Fluidity solver,
as it operates in double-precision. However, if the Fluidity solver could
be improved to provide better convergence with single-precision arith-
metic, then vectorising would be very likely to increase the performance
of the solver by using the available memory bandwidth more effectively.

Preconditioning and the BCRS storage format were chosen for experimen-
tal investigation. These two optimisations were both chosen as it was expected
that they would provide high performance gains whilst requiring a relatively
small amount of effort to investigate. The following chapter provides details
of these investigations. Chapter 6 presents an outline of how the other optimi-
sations may be investigated further.

26

Chapter 5

Experimental Investigations

5.1 Introduction

In this chapter, the results of experimental investigations into two of the pre-
viously identified areas are described. First, the reasons why the implemen-
tation of a preconditioner in the GPU-based solver is necessary is given. The
design and implementation of the preconditioner are subsequently explained.
An analysis of the performance and accuracy of the GPU-based solver with
preconditioning is presented, and an examination of the limitations of the pre-
conditioner and necessary further developments are given. In the latter sec-
tion of this chapter, an investigation into using the BCRS storage format is de-
scribed, which evaluates the potential of the BCRS format to bring about an
improvement in performance of the GPU-based solver.

5.2 Preconditioning

5.2.1 Background

The prototype GPU solver showed promising results - Figure 5.1 shows a com-
parison of the time taken for the PETSc solver to solve problems in the test
program and the time taken by the GPU-based solver to solve the same prob-
lems. However, there are two issues with the original GPU-based solver:

1. The GPU-based solver fails to converge on a solution for test matrices
which are larger than approxmately 130,000 x 130, 000 elements.

2. The test program which incorporates the GPU-based solver computes a
solution which varies across the domain in a similar way to the original,
but the absolute values differ to the original solution.

The first issue does not necessarily indicate an error in GPU-based solver.
It was noted in (Perryman & Kelly, 2008) that the PETSc-based solver also does
not appear to converge well on the test problem.

The second issue can be illustrated by examining the solutions produced
by the original test program and the test program which uses the GPU-based
solver. Figure 5.2 illustrates the difference in the solutions. Figure 5.2(a) gives

27

40

---<-- GPU Solver
C

—+— PET.

35

30

20

Solution time (s)

o e o XXX ‘
0 20000 40000 60000 80000 100000 120000 140000

Matrix Degree

Figure 5.1: Time taken to solve systems assembled in the test program using
the PETSc solver and the original GPU-based solver. (Data sourced from (Per-
ryman & Kelly, 2008))

a graphical representation of the solution produced by the original program,
and Figure 5.2(b) gives the same for the modified test program. It can be seen
from the figure that the solutions differ by a constant.

Psi
-1.96 -1.68 -140 -1.12 -084]1 -056]1 -0280 0.00 -1.58 -130 -1.02 -0737 -0456 -0.176 0.104 0384

Psi

(a) Original (b) Modified

Figure 5.2: Solutions produced by the original test program and a modified
version which uses the GPU solver.

This issue has arisen due to a modification made to the test problem which
affected the solution to the system. In order to explain the modification, it is
necessary to provide some background information about the implementation
of the test program.

In the original test program, the value of the solution at node 1 was fixed
at 0 in order to guarantee that the solution to the system of equations has a

28

unique solution. This is normally achieved by setting A1; = 1, A(1,n) = 0 and
A(m,1) = 0 for all n,m > 1, and setting b; = 0. However, setting an entire
column to zero in a matrix stored using the CRS format is difficult to achieve
(Ham, 2008). This issue is avoided in the test program by setting Ay; = 10?2
and by = 0. The effect of this modification is that A1 is so large that the other
entries in row 1 and column 1 are insignificant in comparison. This effectively
makes these other elements vanish.

It may be expected that inserting a large number into the matrix would
cause an overflow in the solver. However, this is not an issue in practice due
to the operation of the preconditioner. Recall that the Jacobi preconditioner
builds a preconditioning matrix based on the entries of the main diagonal of
the matrix A. This preconditioning matrix is then inverted, before being mul-
tiplied with the matrix A. The net result of these operations is that each row
and column of the matrix A is divided by the value of its diagonal entry. This
cancels out the very large value at A1 and reduces it down to exactly 1. Addi-
tionally, the entries on the first row and column of A are divided by this very
large number, so they are set to be very close to zero. The mechanism just de-
scribed provides an efficient method to zero the first row and column of the
matrix which requires little effort to implement.

Other preconditioners (such as the SSOR preconditioner, Section 2.3.1) also
incorporate the diagonal preconditioner, so they have a similar effect in can-
celling the large entry down to 1 and other entries in the row and column down
to close to zero. However, the large value presents a major problem for an iter-
ative method which does not use a preconditioner.

The GPU solver used by the modified test program did not implement a
preconditioner, which meant that the large entry of A caused overflow errors in
the calculations. In order to overcome this problem, a change was made to the
modified test program, which, instead of setting A1; = 1022, set A1; = 1. The
result of this change is that the modified program assembled a system which
does not have a unique solution, and the matrix A is referred to as singular.
When the matrix is singular, the conjugate gradient method may converge on
any of an infinite number of possible solutions (Shewchuk, 1994). It is also
possible that the method may not converge, as the system of equations is not
positive definite. This also explains why the PETSc solver did not appear to
converge well when trying to solve the test problem.

This modification provides an explanation for both of the issues encoun-
tered in the GPU-based conjugate gradient solver. The first issue arises because
systems which are not positive definite are constructed, which causes the con-
jugate gradient method to fail to converge. The second issue arises because the
conjugate gradient method iterates towards any one of an infinite number of
possible solutions when the matrix is singular, as there is no unique solution
for the method to iterate towards.

Because these two issues arise when the problem is modified, it can be con-
cluded that the modified version of the problem is not a suitable problem for
comparing implementations of the conjugate gradient method. Additionally,
because the unpreconditioned GPU based conjugate gradient solver cannot
handle the unmodified test problem, it cannot be fairly evaluated against the
PETSc solver. It is therefore necessary, before further development and evalu-
ation of the GPU-based conjugate gradient solver can proceed, to modify the
solver so that it implements a preconditioner.

29

5.2.2 Implementation

Because the conjugate gradient solver requires the matrix to be symmetric, the
symmetry-preserving method of applying the preconditioner must be used
(Equation 2.2). The Jacobi preconditioning matrix M is a diagonal matrix, so
E can be computed by taking the square root of all the entries of the diagonal.

Then, E = M? which (because M is diagonal) satisfies the equation M = EET
as required. Additionally, E = ET, so E-! = E~T. Therefore, it is only nec-
essary to compute and store E~!. Because F is a diagonal matrix, E~! can be
computed by dividing 1 by each element of E.

Algorithm 2 is the resulting algorithm for calculating the preconditioning
matrix and applying it to transform the system of equations. Once the system
is solved, the solution must be transformed to find the solution to the original
system.

Algorithm 2: Jacobi Preconditioning

E~1 = E-T = Ann x n zero matrix;

fori=1...ndo /* Calculate E~' and E-T %/
-1 _ p-T _ 1 .
L Ei =L =&
fori=1...ndo /* Left Preconditioning A and b */
b; = E;l X b;;

forj=1...ndo
L Aij = El-;l X Aij;
fori=1...ndo /* Right Preconditioning A */
forj=1...ndo

_ p-T)
L Aji = E; 7 X Aji;

Solve the resulting system Ax = b using the CG method;
fori=1...ndo /* Transform the solution */
L X = EET X Xi;

An implementation of this algorithm was added to the GPU-based conju-
gate gradient solver. Parallelism in the algorithm was exploited by dividing
the workload of the loop between many threads. This modified GPU-based
conjugate gradient solver was integrated into the original test program.

Upon initial testing, it was found that setting the value Aj; = 10%? caused
an overflow error. Although the GPU-based solver performs computation in
double precision, the matrix values are stored in single-precision to minimise
storage requirements and relieve pressure on the memory bandwidth. A con-
sequence of this design decision is that setting a value in the matrix to a very
large number results in an overflow when the value is converted to single-
precision. In order to remedy this issue, the value 1038 is used, which does not
overflow single precision arithmetic, but still has the desired effect of making
all other entries on the row and column effectively equal to zero.

30

5.2.3 Testing

The preconditioned GPU-based solver was tested to ensure that it produced
solutions which were similar to those produced by the unmodified test pro-
gram. Testing was performed by generating problems of various sizes using
the triangle program (see Section 5.3.1 for more description of the triangle
program). The original and modified test programs were executed to com-
pute solutions to the problem. The solutions produced by the two programs
were then compared. The modified program produced solutions which dif-
fered from the original program by a maximum of 10~2. Further analysis of
the error in the GPU-based solver’s solution follows. A graphical representa-
tion of the solutions found by the original and preconditioned GPU solver is
given in Figure 5.3. It can be seen from the legends that the numeric value
of the solutions produced by both solvers is approximately equal. This is in
contrast to the solutions found by the unpreconditioned GPU solver with the
modified test program, which did not agree.

-1.96 -1.68 -140 -1.12 -084]1 -056]1 -0280 0.00 -1.96 -168 -140 -1.]12 -084] -0.561 -0.280 0.00

(a) Original (b) GPU, with preconditioner

Figure 5.3: Solutions produced by the original test program and the test pro-
gram using the GPU solver which includes preconditioning.

Performance Analysis

The performance of the GPU-based solver and the PETSc solver were also com-
pared. In making the comparison, the time taken for uploading the problem to
the GPU and downloading the solution back from the GPU was included, to
give a more accurate impression of the performance of the GPU-based solver.
Additionally, the PETSc solver was configured to use the Jacobi preconditioner
with the conjugate gradient method, to produce a like-for-like comparison. The
hardware which the solvers were tested on had the following specification:

e One core of an Intel Core 2 Duo E8400 processor running at 3GHz with
6MB of L2 cache.

e 2GB of main memory.

e One NVidia Geforce GTX 280 GPU.

Figure 5.4 shows the time taken for each solver to solve systems of various
sizes. It can be seen from the graph that the modified GPU-based solver is ca-
pable of solving systems of equations which consist of 2.5 million simultaneous

31

equations. This is a great improvement on the original GPU solver/modified
test program, which did not converge for systems of equations containing more
than approximately 130,000 equations. The upper bound on the number of
equations which can be solved is not known, as the triangle program runs
out of memory on the test machine when generating meshes for larger prob-
lems.

GPU
—+— PETSc

2000 i

1500 1

1000 1

Solution time (s)

O 400000 800000 1.2e+06 1.6e+06 2e+06 2.4e+06 2.8e+06
Matrix degree

Figure 5.4: Time taken to solve systems assembled in the test program using
the PETSc solver and the preconditioned GPU solver.

It can be seen that the performance benefit of the GPU-based solver in-
creases with the size of the problem. For the largest problem tested, of 2,592,182
equations, the GPU solver required 210 seconds to solve. The PETSc solver
running on the CPU required 2112 seconds to solve the system of equations,
an order of magnitude slower.

The performance of the solver may also be analysed by calculating the total
number of floating point operations (FLOPs) executed per second. A method of
calculating the number of FLOPs per iteration of the conjugate gradient solver,
and the amount of data it uses in loading and storing data to perform calcula-
tions is required to estimate the performance.

First, the algorithm must be examined to identify its main operations. By
inspection, it was determined that the main loop of the conjugate gradient al-
gorithm contains the following operations:

e One matrix-vector multiplication.
e Two vector dot products.

e Three additions of a vector to another vector multiplied by a scalar (re-
ferred to as AXPY).

32

The number of FLOPs which is required to compute the result of each of these
operations was determined as follows:

Matrix-vector Product. In general a matrix-vector product would require n?

multiplications for an n X n matrix. However, when using the CRS for-
mat, it is possible to avoid performing computations with the zero ele-
ments of the matrix. The matrices generated in the test program contain
approximately 6.8 non-zeroes per row (see Section 5.3 for examples of
matrices which are assembled in the test program). An estimate of the
number of multiplications required is obtained by multiplying the num-
ber of rows in the matrix, n, by 6.8. Additionally, elements of the result
vector will require 6.8 additions each, as the sum of each of the multipli-
cations on one row is computed. Therefore, the matrix-vector multiplica-
tion requires 2 x 6.8n FLOPs, or 13.6n FLOPs.

Vector Dot Product. Elements from each vector are multiplied together, so n
multiplications are required for a vector of length n. The sum of all the
multiplications is also computed, so n additions are required. The dot
product required a total of 2n FLOPs.

AXPY. Multiplying each element of one of the vectors by a scalar requires n
multiplications for a vector of length n. Each element of the result is
added to a corresponding element in another vector, so an additional n
additions are required. The AXPY operation requires a total of 211 FLOPs.

The total number of FLOPs required for one iteration of the main loop can
be calculated by summing the FLOPs required by the operations which make
up the main loop. The total number of FLOPs required for one iteration is:

13.6n (Matrix-vector product)
2 x 2n (Two dot products)
3x2n (Three AXPYs)

= 23.6n

+
+

The amount of data transferred which is used by computations inside the
main loop of the conjugate gradient solver may be calculated in a similar man-
ner. The number of bytes transferred throughout one iteration of the main loop
is derived as follows:

Matrix-vector Product. In calculating the matrix-vector product, each element
of the matrix is loaded exactly once. As there are approximately 6.8
non-zeroes per row, 6.8n single precision floating point values must be
loaded to retrieve the entire matrix. As a single precision value requires
four bytes of storage, this means that 27.2n bytes are loaded. Approxi-
mately 6.8 entries are loaded from the source vector per row. However,
the source vector is stored in double precision format, so twice as many
(54.4n) must be loaded for the source vector. Finally, the destination vec-
tor (also stored in double precision format) is loaded and stored 6.8 times
per row, as the results of multiplying elements from the source vector
and matrix row are repeatedly added to the element in the destination

33

vector. This requires another 54.47n bytes to be loaded and 54.4n bytes to
be stored. The total data transfer for the matrix-vector product is 190.4n
bytes.

Vector Dot Product. When computing the dot product, each element of two
vectors of length n stored in double precision format are loaded. This
requires 167 bytes to be loaded. Additionally, the sum of all these results
is computed, which must be stored once and loaded once for each inter-
mediate computation. This requires another 8 bytes to be loaded and 8n
bytes to be stored. The total number of bytes transferred in executing the
dot product is 32n bytes.

AXPY. The AXPY also required two vectors of length # stored in double preci-
sion format to be read. This requires 16n bytes to be loaded. Additionally,
the result is stored back to a vector, which requires 81 bytes to be stored.
The total number of bytes transferred in executing the AXPY operation is
24n bytes.

The total amount of data transferred during one iteration of the main loop
is calculated as follows:

190.4n (Matrix-vector product)
2 x 32n (Two dot products)
3x24n (Three AXPYs)

= 3264n

+
+

The number of iterations required for convergence and the degree of the
matrix were recorded for each problem size when the GPU-based solver was
tested. Using this information, it is possible to estimate the total number of
FLOPs executed during the execution of the main loop of the conjugate gradi-
ent method using the following equation:

FLOPs = Degree x Iterations x 23.6

It is also possible to estimate the total number of bytes transferred though-
out the execution of the main loop:

Bytes = Degree x Iterations x 326.4

Using information about the time spent in the main loop of the solver, it
was possible to calculate an estimate of the number of GigaFLOPs (FLOPs
x10%) per second achieved by the solver in the main loop. Additionally, an
estimate of the transfer rate of values which are used in the main loop of the
conjugate gradient solver is calculated. These estimates are shown in Figures
5.5 (GFLOPs per second) and 5.6 (Gigabytes transferred per second).

It appears from inspecting these graphs that the FLOPs per second achieved
and the GB transferred per second are in exact proportion. However, one
should not necessarily conclude that one of these results depends on the other
to a great extent. Although there is likely to be some dependence, these two
measures are very closely correlated because they are estimates which have

34

35

25

——+

T

GFLOPs/sec

15

05 F

0 1
0 400000 800000 1.2e+06 1.6e+06 2e+06 2.4e+06 2.8e+06

Matrix degree

Figure 5.5: Estimated GigaFLOPs per second achieved when executing the
GPU-based solver for varying problem sizes.

45 T

40 ‘J‘g‘:\/ \ b
B ~— ///R\\\\\\\

35 T —
T+

30 H

GB/sec

|
st‘
20&

15

10 |

0 Il
0 400000 800000 1.2e+06 1.6e+06 2e+06 2.4e+06 2.8e+06

Matrix degree

Figure 5.6: Estimated Gigabytes transferred per second when executing the
GPU-based solver for varying problem sizes.

35

been generated based on exactly the same information. Also, when interpret-
ing the graphs, the very low values to the left of the graph are discounted, as
they represent the throughput for very small problems, for which overheads
represent a disproportionate amount of the execution time.

The maximum double precision floating point performance of the NVidia
280 GTX GPU is 90 GFLOPs per second (Heise, 2008). The maximum estimated
performance of the solver is just over 3 GFLOPs per second, which is very low
utilisation of the maximum performance. This level of performance is greater
than that reported in (Buatois et al., 2007). However, older hardware was used
in benchmarking the CNC.

The maximum memory bandwidth of the NVidia 280 GTX GPU is approxi-
mately 141GB per second (Heise, 2008). The utilisation of the maximum mem-
ory bandwidth is between approximately 25% and 30% of the maximum. It
is thought that the low utilisation is caused by accesses into the source vector,
which follow a random pattern. High transfer rates are only achieved on the
NVidia GPU when accesses follow a sequential pattern.

Because the memory bandwidth is limited by the memory access pattern, it
is thought that the low level of GFLOPs/sec is the result of processors having to
wait for data to arrive before they can perform computation. Additionally, the
indirection required to access elements of the matrix requires extra bandwidth
and computations. It is likely that optimisations which increase the spatial
locality of accesses into the source vector will result in improved bandwidth
utilisation and GFLOPs per second, as fetching adjacent elements allows the
utilisation of memory bandwidth on the GPU to be maximised.

Error Analysis

An analysis of the error in the final solution provided by the GPU-based solver
was also analysed. A comparison between the error produced by the GPU-
based solver and the PETSc solver is shown in Figure 5.7.

It appears from this graph that the PETSc error is zero for almost all so-
lutions - however, the PETSc error is approximately two orders of magnitude
smaller than the GPU-based solver error, which makes it appear to be almost
zero on the graph. Experimentation with decreasing the value of € (the error
tolerance) in the conjugate gradient method did not decrease the error pro-
duced by the GPU-based solver.

It is thought that the larger error is introduced by converting the matrix
entries to be stored in single precision format. When the GPU-based solver
was originally designed, it was felt that this would not introduce a large er-
ror, as the matrix values are not re-computed throughout the execution of the
solver, so any truncation error would not be compounded (Perryman & Kelly,
2008). However, it appears that storing the matrix entries in double-precision
floating-point format should be investigated, in order to improve the accuracy
of the GPU-based solver.

36

0.06 GPU
—+— PETSc

0.05 - 1

0.04 - 1

Error
o
o
w

T
L

0.02 - 1

0.01 ¥ 1

0 i 3 L Il Il Il Il Il
0 400000 800000 1.2e+06 1.6e+06 2e+06 2.4e+06 2.8e+06

Matrix degree

Figure 5.7: Error in the solution of systems assembled in the test program using
the PETSc solver and the preconditioned GPU solver.

5.2.4 Further Work
Eliminating explicit computation of E-'AE~T

The algorithm implemented explicitly computes E-'AE~T. Although this is
not an issue when using the Jacobi preconditioner because it is straightforward
to apply, using other preconditioners (such as SSOR) may make E~'AE~T dif-
ficult to compute explicitly, as they will affect the sparsity pattern of the matrix.
Rebuilding the CSR representation of a new matrix is a costly operation, and
should be avoided if at all possible. An alternative is to use a variant of the
conjugate gradient method, called the Preconditioned Conjugate Gradient Method
(Shewchuk, 1994). This method does not require E"'AE~T or M~ A to be
computed. Instead, the method is modified so that the matrix M~ is applied
to certain vectors during the iteration.

Implementing other preconditioners

Because the test program uses the conjugate gradient method with an SSOR
preconditioner by default, it is expected that the SSOR preconditioner gives
higher performance than the Jacobi preconditioner. To investigate this hypoth-
esis, the original test program was executed using the Jacobi preconditioner
and using the SSOR preconditioner for the same problem sizes. The perfor-
mance of the solver using these two preconditioners was then compared. Fig-
ure 5.8 shows the performance of the PETSc solver when using each of these
preconditioners.

37

SSOR
—+— Jacobi

2000 B

1500 B

1000 B

Solution time (s)

500 B

0 N 1 1 1 I 1 1
0 400000 800000 1.2e+06 1.6e+06 2e+06 2.4e+06 2.8e+06
Matrix degree

Figure 5.8: Time taken for PETSc to solve various sizes of system using the
Jacobi and SSOR preconditioners.

It is clear that the SSOR preconditioner results in better performance than
the Jacobi preconditioner. For larger problems, using the SSOR preconditioner
decreases the execution time by up to 30%. This presents a strong case for de-
veloping and testing other preconditioners in the GPU-based solver code, as
the development effort required is small, and will clearly provide large perfor-
mance gains.

5.3 The BCRS Matrix Format

Using the BCRS storage format has been shown to be effective at improving
the performance of iterative solvers, and the SpMV kernel in general. Imple-
menting the BCRS format in Fluidity and the GPU-based solver will require
a significant amount of effort. In order to explore the potential of the BCRS
format to improve the performance of the solver without having to spend time
on its implementation, the effect of BCRS storage of matrices assembled in the
test program has been examined.

5.3.1 Test Matrices

Three test matrices (A, B and C) are used for evaluation in this section. The test
matrices were generated using the test program and the triangle program.
The triangle program creates a finite element mesh over a given domain built
from triangular elements. The Maximum Triangle Area (MTA) is passed to the
triangle program as a parameter. This parameter constrains the size of the

38

elements. When a smaller MTA is given, a finer mesh is produced, which leads
to a larger number of finite elements. The test program inputs this mesh then
assembles the matrix. Once the matrix is assembled, it is output to disk. Ta-
ble 5.1 shows the degree, MTA, number of non-zero matrix elements, and the
density of these matrices.

Matrix | MTA | Degree | Non-zeroes | Density | Sparsity Pattern
A 0.01 87 567 7.49% Figure 5.9
B 0.001 820 5632 0.83% Figure 5.10(a)
C 0.0005 | 1620 11104 0.42% Figure 5.10(b)

Table 5.1: Characteristics of the test matrices

(a) Test matrix B (b) Test matrix C

Figure 5.10: Sparsity pattern of test matrices B and C.

5.3.2 Exploring the BCRS format

The potential of the BCRS format to improve the performance of the solver has
been assessed by examinining what the block fill ratio for the test matrices is,
and comparing it to the fill ratio of the example matrices given in (Buatois ef al.,

39

2007). The fill ratio is calculated for block sizes between 2 x 2 and 10 x 10, in
order to ensure that enough block sizes have been examined to decide whether
the performance of a BCRS implementation is worth the development effort.

100 m MatrixC
= MatrixB
m— MatrixA

80 B

60 B

Fill Ratio

a0 b g

20 | g

8 6 > ® 9 %
Degree of blocks

Figure 5.11: Fill Ratio of blocks in the BCRS storage format for varying block
sizes.

Figure 5.11 shows the fill ratio of each block size for each of the test matrices.
As can be expected, the smaller block sizes have a greater filling ratio. The
filling ratio of the matrices appears to be poor - for the 2 x 2 block size the
average is under 40%. The 4 x 4 block size is even worse, with a fill ratio under
15%.

It can be noticed that the matrix A has a higher fill ratio than the matrices
B and C for each block size. Because the matrix A is quite small in compar-
ison to the other matrices, it is possible that it does not provide an accurate
representation of the fill ratio of matrices which may arise in the test program.
Despite the matrix C having approximately twice the dimension of matrix B,
the matrices B and C show similar fill ratios for each block size.

The example matrix used in (Buatois ef al., 2007) for smoothing showed a
fill ratio of approximately 38% with the 4 x 4 block size - using this block size
gave the best performance. However, in the case of the test matrices, the only
block size with a fill ratio close to 40% for the larger matrices (B and C) is the
2 x 2 block size. It can be concluded that the block size most likely to give a
performance improvement is the 2 x 2 block size. Larger block sizes are likely
to introduce too much padding, which will lead to an excessive amount of
redundant computation, and unnecessarily use memory bandwidth.

Because only the 2 x 2 block size is likely to generate any performance im-
provement, the development of a solver which uses the BCRS format should
not be regarded as a high priority. If the amount of padding required out-

40

weighs the reduction in indirection, then there is no smaller block size which
can be used, so the implementation of the BCRS format will have been a waste
of effort. However, when another solver (e.g. GMRES) which can solve prob-
lems which arise in the main Fluidity codebase is developed, the BCRS stor-
age format should be revisited. Matrices which are assembled in solving these
problems may exhibit a higher fill ratio when stored in the BCRS format than
the matrices generated by the test problem.

5.4 Conclusion

We have seen that the development of a preconditioner for the GPU-based
solver has made an improvement which allows the unmodified test problem to
be solved, and that this has produced results which are numerically similar to
the PETSc solver. Additionally, the GPU-based solver can solve systems up to
an order of magnitude faster than the PETSc solver, and can solve systems of
over 2.5 million equations. Although the solver shows promising performance
results, analysis has shown that the utilisation of processing units and memory
bandwidth is poor. This indicates that with further development and optimi-
sation, there is potential to increase the speed of the solver much further. The
accuracy of the solver has been seen to be limited, so further development is
required to increase the accuracy of the solution. Additionally, the case for ex-
tending the solver to implement other, better-performing preconditioners have
been seen.

Investigations into the BCRS storage format have revealed that it is unlikely
to give a significant performance increase to the solver for the test problem.
However, the main Fluidity program may be more amenable to being accel-
erated by using BCRS as a storage format. When a general GPU-based solver
is developed to solve systems in Fluidity, the BCRS storage format should be
revisited.

41

Chapter 6

Conclusions and Further
Work

6.1 Conclusions

A survey and evaluation of the literature on iterative solvers for classical and
GPU architectures has been presented. Experimental evaluations of potential
optimisations have been undertaken.

The main component of iterative solvers, the SpMV kernel, has been dis-
cussed. Its performance issues have been identified, and commonly-used opti-
misations for classical and vector architectures have been discussed. Many of
these optimisations may be applied to SpMV kernels for GPUs.

Existing implementations of GPU-based solvers described in the literature
have been reviewed to identify optimisations which have shown performance
benefits. Two of these optimisations were selected for experimental investiga-
tion. Other potentially beneficial optimisations are described in the next sec-
tion.

The GPU-based conjugate gradient code has been extended in order to al-
low it to solve the original problem for the test program, by implementing
preconditioning. The solver is now capable of solving very large systems of
equations, consisting of over 2.5 million equations. The performance of the
solver has been compared to the PETSc conjugate gradient solver, and it has
been seen that the GPU-based solver converges up to an order of magnitude
more quickly than the PETSc solver.

Analysis of the performance of the GPU-based solver in terms of its com-
putational and memory throughput have shown that there is room for optimi-
sations which make better use of the GPU hardware. Presently its utilisation of
the available processing units and memory bandwidth is low. Optimisations
which may improve the performance of the solver are part of further work.

The numerical performance of the solver, whilst stable, is not as accurate as
the PETSc solver. Frequently the PETSc solver produces solutions with an error
which is two orders of magnitude smaller than the error from the GPU-based
solver. Further work is required to reduce this error.

The BCRS storage format has been examined to determine whether its im-
plementation is likely to improve the performance of the GPU-based solver. It

42

is concluded that matrices assembled by the test problem are too sparse for the
solver to benefit from an implementation of the BCRS format.

Further work involves investigation in a variety of different directions, and
is described in the following section.

6.2 Further Work

Further work is divided into two categories: that which should proceed in
order to discover how to further accelerate the solver for the test problem, and
that which should proceed once the full Fluidity package is to be accelerated
by implementing an alternative iterative solver. Work to accelerate the test
problem should proceed first, as it is more straightforward to work with - it
is expected the knowledge and experience gained from this development will
ease the development of more advanced methods for the full Fluidity package.
Further work to accelerate the test problem involves:

Implicit Preconditioning. It has been seen in Section 5.2.4 that explicitly cal-
culating the matrix of coefficients may present a problem for precondi-
tioners other than the Jacobi preconditioner. This issue can be avoided by
modifying the GPU-based solver to implement the preconditioned con-
jugate gradient method.

Other Preconditioners. In Section 5.2.4 it was also shown that alternative pre-
conditioners can decrease the time taken by the solver by up to 30%. Once
the preconditioned conjugate gradient method is implemented, alterna-
tive preconditioners, such as the SSOR preconditioner should be imple-
mented. Additionally, to facilitate development of other preconditioners,
an interface for developing preconditioners, and a mechanism to select
the preconditioner at runtime should be implemented.

Reordering Optimisations. The Cuthill-McKee and Column Count algorithms
have yet to be experimentally tested. The Cuthill-McKee algorithm may
be evaluated with little implementation effort by applying the algorithm
to the mesh output from triangle before it is used as input to the test
program. Implementations of the algorithm which operate on triangle
output are freely available, such as (Stahel, 2008).

Software Prefetching. An area of the solver which is most likely to benefit
from prefetching is the SpMV kernel. As accesses into the source vector
follow a random pattern, a prefetcher should fetch a portion of the source
vector into the shared memory, where it can be accessed very quickly.
Additionally, combining this optimisation with the RCM re-ordering al-
gorithm may minimise the portion of the source vector required for each
element of the result.

Matrix Storage. The preconditioned GPU-based solver produces solutions which
are correct but have larger error terms than the PETSc solver. This is likely
to be the result of the matrix being stored in single-precision format. Stor-
ing the matrix in double precision format should be tested to determine
if this increases the accuracy of the solution produced by the GPU-based
solver. A potential drawback of using double precision for the matrix is

43

that texture memory, where the matrix is stored, does not support double
precision values (NVidia, 2007b). However, a possible workaround could
be developed by using an int2 type (which is supported) and casting it
to a double after fetching:

device__ double fetch_double
(texture<int2,1> val, int elem)

static __inline

{

int2 v = texl1Dfetch(val, elem);

return __hiloint2double(v.y, v.x);
X

Single Precision Arithmetic. It has been shown that other implementations

of GPU-based solvers perform computation using single precision arith-
metic, and achieve convergence. However, it appears likely that the test
problem requires double precision to find an accurate solution. Because
there are eight times more single precision processors than there are for
double precision an NVidia 280GTX GPU, it is likely that performance
would be increased if computations could be performed in single preci-
sion. Efforts have been made to develop solvers which obtain high speed
whilst maintaining accuracy by computing using a mixture of single and
double precision (Goddeke et al., 2005), (Buttari ef al., 2008). Development
of the GPU-based solver to use mixed precision may follow techniques
outlined in the existing literature in this area.

Vectorising. Should a mixed-precision GPU-based solver be implemented, its
performance may be further increased by using vector data types, such
as the float4 data type. This will allow greater utilisation of available
memory bandwidth, leading to an overall increase in performance.

Other areas may be investigated in the longer-term - presently, their de-
velopment will not have a great impact on the solution to the test problem,
but may have benefits when solving systems assembled by the main Fluidity
package:

Other Methods. In particular the GMRES method will eventually have to be
implemented using the GPU to solve the systems which are assembled
in Fluidity. Once the conjugate gradient solver has been thoroughly in-
vestigated and tested, the development of a GPU-based GMRES solver
should not require a large effort. Kernels which make up the majority of
the method (including the SpMV) kernel may be re-used from the conju-
gate gradient solver.

Multi-GPU Solvers. In order to solve huge problems, it will be necessary even-
tually to develop a solver which partitions the problem and distributes
computation across multiple GPUs. An early version of an implementa-
tion of a conjugate gradient solver which uses multiple GPUs is presented
in (Okuda & Georgescu, 2008). Large performance gains are demon-
strated when using multiple GPUs, which provides an indication that
a multiple GPU solver is feasible.

44

BCRS Storage. Although the BCRS format shows little benefit for the conju-
gate gradient solver when solving the test problem, this does not imply
that solving systems of equations generated by Fluidity will not bene-
fit from storing the matrix using the BCRS format. When a GPU-based
solver for Fluidity is in development, matrices assembled in Fluidity should
be tested to determine the fill ratio of blocks in the BCRS format. A large
fill ratio will indicate that the solver may show increased performance
using BCRS over the standard CRS format.

Finally, two optimisations have been identified which are unlikely to pro-
vide a significant performance increase relative to the effort of their implemen-
tation. It is unlikely that further investigation of these optimisations on GPUs
is worthwhile.

JAD Format. Although the JAD format may increase performance, it is very
different to the CRS storage format used in Fluidity. As high performance
has been obtained from the GPU-based solver when using the CRS for-
mat, there is little need to explore the JAD format. This may appear to
conflict with the suggestion that the BCRS format should be investigated
- however, it is straightforward to assess the potential of the BCRS format
to improve performance. Additionally, implementing the JAD format in
Fluidity will require much more effort than implementing the BCRS for-
mat, as it is very dissimilar to the CRS format.

Cache Blocking Optimisations. Cache blocking optimisations seek to increase
the hit rate of the cache throughout the execution of an SpMV kernel.
However, GPUs have no cache, so there is no need to further investigate
these optimisations. Instead, the GPU will be more likely to benefit from
prefetching data into shared memory, which acts as a software controlled
cache to some extent.

45

References

Advanced Micro Devices, Inc. 2008. ATI Stream SDK User Guide.

Balay, Satish, Buschelman, Kris, Eijkhout, Victor, Gropp, William D., Kaushik,
Dinesh, Knepley, Matthew G., McInnes, Lois Curfman, Smith, Barry F, &
Zhang, Hong. 2006 (Sept.). PETSc Users Manual. Tech. rept. ANL-95/11
- Revision 2.3.2. Argonne National Laboratory. see http://www.mcs.anl.
gov/petsc.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato,]., Dongarra, J., Eijkhout,
V., Pozo, R., Romine, C., & der Vorst, H. Van. 1994. Templates for the So-
lution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition.
Philadelphia, PA: SIAM.

Bolz, Jeff, Farmer, Ian, Grinspun, Eitan, & Schroder, Peter. 2005. Sparse matrix
solvers on the GPU: conjugate gradients and multigrid. Page 171 of: SIG-
GRAPH '05: ACM SIGGRAPH 2005 Courses. New York, NY, USA: ACM.

Buatois, Luc, Caumon, Guillaume, & Lvy, Bruno. 2007. Concurrent Number
Cruncher: An Efficient Sparse Linear Solver on the GPU. In: High Perfor-
mance Computation Conference (HPCC), Springer Lecture Notes in Computer
Sciences. Award: Second best student paper.

Buttari, Alfredo, Dongarra, Jack, Kurzak, Jakub, Luszczek, Piotr, & Tomov, Sta-
nimir. 2008. Using Mixed Precision for Sparse Matrix Computations to
Enhance the Performance while Achieving 64-bit Accuracy. ACM Trans.
Math. Softw., 34(4), 1-22.

Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., & Stein, Clifford.
2001. Introduction to Algorithms. Cambridge, MA, USA: The MIT Press.

Cuthill, E., & McKee, J. 1969. Reducing the bandwidth of sparse symmetric
matrices. Pages 157-172 of: Proceedings of the 1969 24th national conference.
New York, NY, USA: ACM.

D’Avezedo, E. E, Fahey, M. R., & Mills, R. T. 2005. Vectorized Sparse Matrix
Multiply for Compressed Row Storage Format. In: Proceedings of the 5th
International Conference on Computational Science. Springer-Verlag.

Duff, I. S., & Reid, J. K. 1983. The Multifrontal Solution of Indefinite Sparse
Symmetric Linear. ACM Trans. Math. Softw., 9(3), 302-325.

46

Goddeke, D., Strzodka, R., & Turek, S. 2005. Accelerating Double Preci-
sion FEM Simulations with GPUs. Pages 139-144 of: Hiilsemann, E,
Kowarschik, M., & Riide, U. (eds), Simulationstechnique 18th Symposium
in Erlangen, September 2005, vol. Frontiers in Simulation. SCS Publishing
House e.V. ASIM 2005.

Gorman, Gerard, Piggot, Matthew, & Farrell, Patrick. 2008. About Fluidity.
http:/ /amcg.ese.ic.ac.uk/index.php?title=FLUIDITY.

Goumas, Georgios, Kourtis, Kornilios, Anastopoulos, Nikos, Karakasis,
Vasileios, & Koziris, Nectarios. 2008. Understanding the Performance of
Sparse Matrix-Vector Multiplication. Pages 283-292 of: PDP "08: Proceed-
ings of the 16th Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008). Washington, DC, USA: IEEE Computer Soci-
ety.

Gschwind, Michael, Hofstee, H. Peter, Flachs, Brian, Hopkins, Martin, Watan-
abe, Yukio, & Yamazaki, Takeshi. 2006. Synergistic Processing in Cell’s
Multicore Architecture. IEEE Micro, 26(2), 10-24.

Ham, David. 2008. Regarding the 1,1 matrix entry in test_laplacian. Email message
sent 11th Dec 2008.

Heise. 2008. Nuidia kratzt mit neuen Grafik- und Compute-Prozessoren
an der TFLOPS-Schallmauer. http://www.heise.de/newsticker/
Nvidia-kratzt-mit-neuen-Grafik-und-Compute-Prozessoren-an-der-TFLOPS-Schallmauer--/
meldung/109495.

Hestenes, Magnus, & Stiefel, Eduard. 1952. Methods of Conjugate Gradients
for Solving Linear Systems. Journal of Research of the National Bureau of
Standards, 49(6), 409—436.

Khailany, Brucek, Dally, William J., Kapasi, Ujval J., Mattson, Peter, Namkoong,
Jinyung, Owens, John D., Towles, Brian, Chang, Andrew, & Rixner, Scott.
2001. Imagine: Media Processing with Streams. IEEE Micro, 21(2), 35-46.

Khronos Group, The. 2008. OpenCL 1.0 Working Specification.

Kincaid, D. R, & Young, D. M. 1988. A brief review of the ITPACK project. |.
Comput. Appl. Math., 24(1-2), 121-127.

Lawson, C. L., Hanson, R. J., Kincaid, D. R., & Krogh, E T. 1979. Basic Linear
Algebra Subprograms for Fortran Usage. ACM Trans. Math. Softw., 5(3),
308-323.

Lin, S., & Kernighan, B. W. 1973. An Effective Heuristic Algorithm for the
Traveling-Salesman Problem. Operations Research, 21(2), 498-516.

Lindholm, Erik, Nickolls, John, Oberman, Stuart, & Montrym, John. 2008.
NVIDIA Tesla: A Unified Graphics and Computing Architecture. IEEE
Micro, 28(2), 39-55.

Lucas, Robert F., Wagenbreth, Gene, & Davis, Dan M. 2007. Implementing a
GPU Enhanced Cluster for Large-Scale Simulations. In: Proceedings of The
Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

47

NVidia. 2007a. The CuBLAS Library.

NVidia. 2007b. NVIDIA CUDA Compute Unified Device Architecture - Program-
ming Guide.

Okuda, Hiroshi, & Georgescu, Serban. 2008. Conjugate Gradients
on a Multi-GPU System. http://nkl.cc.u-tokyo.ac.jp/seminars/0810-
WS/ abstracts/okuda-a.pdf.

Perryman, Tristan, & Kelly, Paul H. J. 2008. Accelerating Fluidity Using the GPU.
UROP Report. Imperial College London.

Pichel, J.C., Heras, D.B., Cabaleiro, J.C., & Rivera, EF. 2004. Improving the
locality of the sparse matrix-vector product on shared memory multipro-
cessors. Parallel, Distributed and Network-Based Processing, 2004. Proceedings.
12th Euromicro Conference on, Feb., 66-71.

Piggott, M. D. 2006. Fluidity/ICOM Manual.

Pinar, Ali, & Heath, Michael T. 1999. Improving Performance of Sparse Matrix-
Vector Multiplication. SC Conference, 0, 30.

Saad, Y. 2003. Iterative Methods for Sparse Linear Systems, 2nd edition. Philadel-
pha, PA: SIAM.

Salvi, Rodolfo. 2002. The Navier-Stokes Equations: Theory and Numerical Methods.
Marcel Dekker.

Seiler, Larry, Carmean, Doug, Sprangle, Eric, Forsyth, Tom, Abrash, Michael,
Dubey, Pradeep, Junkins, Stephen, Lake, Adam, Sugerman, Jeremy, Cavin,
Robert, Espasa, Roger, Grochowski, Ed, Juan, Toni, & Hanrahan, Pat. 2008.
Larrabee: a many-core x86 architecture for visual computing. ACM Trans.
Graph., 27(3), 1-15.

Shahnaz, Rukhsana, Usman, Anila, & Chughtai, Imran R. 2005. Review of Stor-
age Techniques for Sparse Matrices. 9th International Multitopic Conference,
IEEE INMIC 2005, Dec., 1-7.

Shaw, B., Ambraseys, N. N., England, P. C.,, Floyd, M. A., Gorman, G. J.,
Higham, T. F. G., Jackson, J. A., Nocquet,]. M. Pain, C. C., & Piggott, M. D.
2008. Eastern Mediterranean tectonics and tsunami hazard inferred from
the AD 365 earthquake. Nature Geoscience, 1, 268-276.

Shewchuk, Jonathan R. 1994. An Introduction to the Conjugate Gradient Method
Without the Agonizing Pain. Tech. rept. Pittsburgh, PA, USA.

Stahel, Andreas. 2008. An implementation of the Cuthill-McKee algorithm.
https:/ /staff.hti.bfth.ch/shal/pwf/fem/CuthillMcKee/.

Tiyyagura, Sunil R., Kiister, Uwe, & Borowski, Stefan. 2006. Performance Im-
provement of Sparse Matrix Vector Product on Vector Machines. Compu-
tational Science - ICCS 2006, 3991, 196-203.

Toledo, Sivan. 1997. Improving the memory-system performance of sparse-
matrix vector multiplication. In: IBM Journal of Research and Development.

48

Tremblay, M., & Chaudhry, S. 2008. A Third-Generation 65nm 16-Core 32-
Thread Plus 32-Scout-Thread CMT SPARC Processor. Solid-State Circuits
Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International,
Feb., 82-83.

Vuduc, Richard, & Moon, Hyun-Jin. 2005 (September). Fast sparse matrix vec-
tor multiplication by exploiting variable block structure. In: Proceedings of
the International Conference on High-Performance Computing and Communica-
tions. LNCS 3726.

Wiggers, W. A., Bakker, V., Kokkeler, A. B. J., & Smit, G.]. M. 2007. Implement-
ing the conjugate gradient algorithm on multi-core systems. Pages 11-14
of: Nurmi, J., Takala, J., & Vainio, O. (eds), Proceedings of the International
Symposium on System-on-Chip (SoC 2007), Tampere. Piscataway, N]J: IEEE.

Williams, Samuel, Oliker, Leonid, Vuduc, Richard, Shalf, John, Yelick, Kather-
ine, & Demmel, James. 2007. Optimization of sparse matrix-vector multi-
plication on emerging multicore platforms. Pages 1-12 of: SC '07: Proceed-
ings of the 2007 ACM/IEEE conference on Supercomputing. New York, NY,
USA: ACM.

Yelick, Kathy. 2008 (Dec.). CS 267:Applications of Parallel Computers, Lecture 17.
http:/ /www.cs.berkeley.edu/ yelick/cs267.

49

