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Abstract

It can be argued that producing maintainable, high performance implementations of the finite el-
ement method for multiple targets requires that they are written using a high-level domain-specific
language (DSL). The PhD project outlined in this report is an investigation into how a DSL for
the finite element method can be compiled to optimised implementations for Graphics Processing
Units (GPUs).

An analysis of related literature describing the implementation of finite element methods on
GPUs is presented, and it is shown that these optimisations may be concealed beneath the level
of abstraction of the Unified Form Language (UFL), a DSL for the finite element method. Prelim-
inary investigations involving the implementation of a high-performance GPU-based advection-
diffusion solver, and a UFL compiler that generates efficient GPU codes are presented. The litera-
ture review and experiments provide a basis for future investigations towards the completion of
this PhD project.

The long-term goal of this project is to integrate high-performance generated codes into Flu-
idity, a general-purpose computational fluid dynamics package. This will facilitate the aggressive
exploitation of future manycore architectures, and reduce the complexity of further development
of finite element methods.
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Chapter 1

Introduction

This report describes a summary of the research that has been completed during the first 9 months
of my PhD. This research forms a basis for further study over the next two years.

1.1 Motivation and Outline

Fluidity [Gorman et al., 2009, Piggott et al., 2009] is a computational fluid dynamics package that
uses the finite element method on unstructured meshes to simulate complex models of oceans and
other phenomena. It is composed of hundreds of thousands of lines of Fortran code.

The recent emergence of manycore architectures (including GPUs) as platforms that offer a
large increase in computational power over traditional architectures motivates their exploitation
for computational science applications. In order to make use of these architectures with Fluidity,
portions of the code must be rewritten using CUDA or OpenCL, which are the languages cur-
rently available for programming these devices. However, this will require a large investment
in time and effort. Additionally, the rewritten code must be tuned for each new architecture. It
is also unlikely that CUDA and OpenCL will remain the languages of choice for programming
future architectures; when they are replaced, it will again be necessary to rewrite large portions of
Fluidity.

We note that in general the development of finite element codes in low-level languages is
complicated and error prone. This process is further complicated by the fact that optimal data
layouts and access patterns differ between targets, especially when execution of the code spans
multiple architectures. Additionally, the optimal choice of algorithm that implements a given
operation depends on characteristics of the target hardware, and even the parameters of a specific
problem. To produce efficient implementations in a low-level language, developers must maintain
multiple algorithm implementations for multiple targets.

It can be argued that producing maintainable high-performance implementations of finite el-
ement methods for multiple targets requires that they are written using a high-level domain-
specific language. The Unified Form Language (UFL) [Alnæs and Logg, 2009], is one such high-level
language that allows the generation of high-performance code from maintainable sources.

This PhD project is an investigation into how tools that generate efficient low-level code for
GPUs from high-level specifications written in UFL may be developed and integrated into existing
codebases. Part of this investigation involves determining how finite element assembly should
be implemented on GPUs in order to obtain high performance. The remainder of the project
involves building a UFL compiler and embedding into it the domain knowledge that enables it
to generate these optimised implementations. The completion of this project will enable a large
portion of Fluidity to be rewritten in UFL, allowing future architectures to be targeted more easily,
and reducing the complexity of software development.
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1.2 Publications and Presentations

A number of presentations describing the work of this project have been given outside the college.
These include:

• Experiments in unstructured mesh finite element CFD using CUDA [Markall et al., 2009].
This presentation was given at the 1st UK CUDA Developers’ Conference, and won the
prize for the best student presentation.

• Generating optimised multiplatform finite element solvers from high-level representations
[Markall et al., 2010b]. This presentation was given at the 8th meeting of the IFIP Working
Group 2.11 on Program Generation.

• Experiments in generating and integrating GPU-accelerated finite element solvers using the
Unified Form Language [Markall et al., 2010a]. This presentation was given at the FEniCS
’10 Conference.

The work already completed has also been published:

• Towards generating optimised finite element solvers for GPUs from high-level specifica-
tions [Markall et al., 2010c]. This publication was presented at the workshop on Automated
Program Generation for Computational Science1 at the 10th International Conference on
Computational Science.

1.3 Report Structure

We begin by providing background information about GPU architectures and the finite element
method in Chapter 2. We examine the literature discussing the implementation of finite element
methods on GPUs, and automated programming of the finite element method in Chapter 3. Prac-
tical investigations that have been completed are reported in Chapter 4. A plan for the proposed
research is outlined in Chapter 5.

1http://www.sc.rwth-aachen.de/Events/APGCSatICCS2010/
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Chapter 2

Background

2.1 Introduction

We begin by discussing manycore architectures, in particular the NVidia Fermi architecture. This
discussion serves to highlight the differences in programming each architecture, and to draw at-
tention to the challenges that must be overcome, particularly when implementing computations
that use unstructured data.

Subsequently, we introduce the finite element method and discuss how it is typically imple-
mented on CPU architectures. This is used as a foundation to our discussions of the various
implementation choices that may be made on manycore architectures in the following chapters.

2.2 Manycore Architectures

2.2.1 Current Hardware - NVidia Fermi

Graphics Processing Units (GPUs) are highly-parallel architectures that have a large memory band-
width and many streaming multiprocessors (SMs). Figure 2.1 shows a schematic diagram of an SM
in NVidia’s latest architecture, Fermi [NVidia, 2009a]. The SM may be thought of as similar to a
SIMD execution unit, or a 32-lane vector processor.

There are several levels of the memory hierarchy in Fermi. We highlight the main levels that
require consideration when developing code for the Fermi architecture:

Global Memory. A Fermi card has up to 6GB of onboard memory that is accessible by all the
SMs. This memory is the slowest, with a latency of hundreds of cycles. Since this memory is
separate from the memory of the host computer, data must be marshalled into this memory
before computation on the GPU can begin.

L1 Caches. Each SM has 64KB of private cache. This cache is split into a 48KB portion and a 16KB
portion. One of these portions may be assigned to a hardware-controlled cache and the other
is assigned to a software-controlled cache, at the choice of the programmer. The caches can
be accessed more quickly than global memory, although it has a limited number of banks,
which can lead to conflicts that lower performance.

Registers. Each SM has 32,768 32-bit registers. These may be accessed very quickly. However,
these registers are shared between potentially thousands of threads, leaving only a small
number per thread.

Execution on Fermi is performed by launching individual kernels that are executed by many
threads in parallel. These threads are grouped at various granularities, as shown in Figure 2.2. The
finest grouping is referred to as a warp, made up of 32 threads that all share a program counter.
Since these threads share a program counter, they execute in lock-step performing the same oper-
ations on individual items of data.
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Figure 2.1: A streaming multiprocessor in NVidia’s Fermi architecture. From [NVidia, 2009b].
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Figure 2.2: A 2D grid of 2D thread blocks. From [NVidia, 2009a].
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Several warps are grouped together to form a block, and the set of all blocks executing concur-
rently makes up the grid. Individual SMs are assigned a number of blocks to execute. Because
each block has an affinity for one SM, communication between threads in different blocks is not
possible.

2.2.2 Performance Considerations

Since global memory is separate from the host’s memory, it is important to ensure that all com-
putation within an inner loop is performed on the GPU. If the computation in the inner loop is
divided between the GPU and the host, execution speed will be greatly reduced due to the need
to constantly transfer data across the PCIe bus.

Secondly, since warps all share a single program counter, and execute the same code path con-
currently, it is important that they all follow the same path of execution in the code. When threads
within a warp take different paths, execution is serialised between these two paths, reducing per-
formance.

Finally, coalesced memory access is needed for high memory bandwidth utilisation, and is
achieved when groups of 16 threads (half of a warp) concurrently access data within a 64-byte
aligned memory window. Coalescing increases the memory bandwidth utilisation because it al-
lows multiple accesses to be transferred across the very wide data bus in a single operation. Since
the threads in a half-warp are all executing the same instruction, their accesses will occur at the
same time; when these accesses occur, the hardware can recognise that they fit within the window
and amalgamate the accesses into a single transfer.

We have discussed the main performance considerations when writing code for the Fermi
architecture. There are other considerations that are required to obtain optimum performance
that are described in [NVidia, 2009a]. Often it is necessary to use tools such as the CUDA profiler
[NVidia, 2010] to understand the performance of code.

2.2.3 Other Architectures

Although our current focus is on the Fermi architecture, it is important to note that there are
other multicore and manycore architectures that are currently in use and in development. The
Fermi architecture was preceded by the G80 and G200 Tesla architectures from NVidia. Although
all the NVidia architectures share a programming model, their performance characteristics differ,
meaning that code must be individually tuned for best performance on each device.

Other GPU architectures include AMD’s Evergreen architecture [AMD, 2010], that has peak
performance somewhere between that of the G200 and Fermi architectures. The Cell Proces-
sor [Gschwind et al., 2006] is an interesting research platform due to its heterogeneous architec-
tures, although it is not under further development. Intel’s forthcoming Larrabee architecture
[Seiler et al., 2008] is heavily based on the x86 processor, and can be expected to have very differ-
ent performance characteristics to GPU architectures.

2.2.4 Programming Languages

In order to make effective use of the GPU, programs must be designed such that the workload
is decomposed into many (thousands) of data-parallel tasks that can be mapped to individual
threads.

CUDA [NVidia, 2009a] is a language for programming NVidia’s Tesla Graphics Processing Units
(GPUs). It is a set of extensions to the C programming language that allows the user to define
kernels for execution on the device, and includes additional keywords that are used for managing
the execution of threads.

In order to give a brief overview of a CUDA kernel, we consider an example of a kernel that
performs the computation y = αx + y for scalar α and vectors x and y. A C implementation of
this operation uses a loop that iterates over each element in the vectors.
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void daxpy(double a, double *x, double *y, int n) {

for(int i=0; i<n; i++)

y[i] = y[i] + a*x[i];

}

Figure 2.3: DAXPY Kernel in C.

In order to convert this to a CUDA kernel, the work is divided between threads so that one
thread computes the result for each element. This kernel is designed to be launched with as many
threads as there are vector elements. Each thread calculates the offset for the element that it is
assigned from the ID of its thread block, and its own ID within the block.

__global__ void daxpy(double a, double *x, double *y, int n) {

int i=threadIdx.x+blockIdx.x*blockDim.x;

if(i<n)

y[i] = y[i] + a*x[i];

}

Figure 2.4: DAXPY Kernel in CUDA.

In order to standardise development for multicore architectures, the OpenCL specification
[Khronos Group, 2008] has been developed. The OpenCL language shares many of the features
of CUDA. However, it is designed to be compiled to executable code for a wide range of archi-
tectures, including GPUs, multicore CPUs, and the Cell processor. Since it is designed to be more
flexible than CUDA in terms of supported targets, the assumptions about grids and blocks that
are part of CUDA are abstracted away in OpenCL kernel code. Figure 2.5 gives an example of the
daxpy kernel in OpenCL.

__kernel void daxpy(const double a, __global const double *x,

__global double* y, int n) {

int i = get_global_id(0);

if (i >= n)

return;

y[i] = y[i] + a*x[i];

}

Figure 2.5: DAXPY Kernel in OpenCL.

2.2.5 Remarks

Although it is easy to begin developing codes for GPUs and multicore systems, optimising the
performance of codes on these architectures is non-trivial. It is often the case that the optimal
division of work between threads and the granularity of kernels is not obvious, and various ex-
periments must be performed in search of an optimum. Each time a new GPU architecture is
released, existing codes must be re-optimised, requiring a large investment of time and effort.

Although OpenCL is portable across many targets, it is not performance portable; in the same
way that different GPUs require the code to be optimised in different ways, optimising for differ-
ent architectures requires further changes. Obtaining optimal performance from all the different
architectures a code may be run on is not sustainable as it will require constant development effort.

Additionally, managing the marshalling of data to and from the devices, and between the
various levels of the memory hierarchy places further burden on the programmer. For example,
making full use of the L1 caches on Fermi requires code to be written that explicitly marshals data
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at the beginning and end of execution of each kernel. Since the characteristics of the caches can
vary between architectures, this adds another dimension of complexity in maintaining code for
multiple targets.

2.3 The Finite Element Method

2.3.1 A Brief Overview

The finite element method is used for discretising the weak form of partial differential equations.
Here we provide a brief overview of the mathematical formulation of the method - for a full treat-
ment, see [Karniadakis and Sherwin, 1999]. We will use this explanation as a base for describing
the implementation choices that may be made. The general formulation of an equation that may
be discretised using the finite element method is of the form:

L(u) = q (2.1)

where L is any linear differential operator, u is an independent variable, and q is a known function
that does not depend on u. For example, L ≡ ∇2 and q is the source term in Poisson’s equation.
Solving this equation numerically provides gives a solution uδ, which may not satisfy Equation
2.1 perfectly. So we have:

R(uδ) = L(uδ)− q (2.2)

Here R is the residual, which provides a measure of the amount by which the numerical solu-
tion does not satisfy the original problem. In the ideal case, R = 0, and the numerical solution
is the exact solution, so we must try to eliminate this term. However, requiring the numerical
solution to be exact makes it too difficult to find a solution to most problems. If we are prepared
to tolerate some inaccuracy, we can transform the system to weaken the definition of equality.
First, we multiply the equation by an arbitrary test function, v, and then integrate over the whole
domain, Ω, giving: ∫

Ω
vR(uδ) dX =

∫
Ω

vL(uδ) dX−
∫

Ω
vq dX (2.3)

Now, we assume that R = 0, which makes the integral on the left-hand side disappear, leaving us
with: ∫

Ω
vL(uδ) dX =

∫
Ω

vq dX (2.4)

This form is known as the integral form of Equation 2.1. The left-hand side of this equation defines
an inner product between the test function v and the trial function L, and therefore can be consid-
ered as a projection of v into L. Because the function q is known, we can evaluate the right-hand
side, and then compute the aforementioned projection to give uδ. This projection is known as the
Galerkin Projection.

In order to evaluate the right-hand side and the projection at discrete points (as is necessary on
a computer with finite memory and processing power), the integral form must be discretised. The
discretisation allows us to represent functions in the test and trial spaces as a linear combination of
basis functions. For example, we represent the solution as uδ = ∑N

i=1 ûiΦi where N is the number
of functions in the basis for this space, and ûi is the i-th coefficient of the i-th basis function, Φi.
The basis functions are chosen so that

Φi(xi) = 1, and ∀k : i 6= k, Φi(xk) = 0 (2.5)

where xi is the i-th node in a set of nodes placed at discrete points in the domain. Although a wide
variety of choices of basis function are possible, we consider a simple basis for a 1D domain. We
can define the basis functions as follows:
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1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

Figure 2.6: A piecewise continuous linear basis over a one-dimensional domain with four nodes
and three elements.

Φi =


x−xk−1
xk−xk−1

if x ∈ [xk−1, xk]
xk+1−x
xk+1−xk

if x ∈ [xk, xk+1]

0 otherwise.

(2.6)

This is a piecewise linear basis. An example of this basis for a four-node domain is shown in
Figure 2.6

Having decided on a discretisation, we may now proceed to evaluate the integrals on both
sides of Equation 2.4. The result of this process, a linear system of equations

Ax = b (2.7)

is assembled, in which the matrix A is derived from the LHS and the vector b is derived from the
RHS of the weak form. The solution to this system of equations, x, is the solution to the discretised
problem.

2.3.2 Boundary Conditions

Often boundary conditions must be enforced in order for there to a be a unique solution to a
differential equation. Boundary conditions are usually one of two kinds:

Dirichlet. These specify the exact value of a function at a boundary node. An example of a Dirich-
let boundary condition is the no-slip condition, u = 0, which states that the velocity of a fluid
is zero at a boundary, and the free-slip condition, u · n = 0, which states that fluid moves
freely along a boundary, but not through it.

Neumann. These specify the value of the derivative of a function at a boundary node. An exam-
ple of a Neumann boundary condition is the do-nothing boundary condition, ∂u

∂X = 0, which
prescribes free flow out of the domain.

The implementation of boundary conditions in the finite element method involves a similar
process to that for the entire domain. In evaluating boundary condition contributions, only the
edges of the domain are considered, which requires computations in a domain of dimension that
is one lower than the whole domain. For example, in a 2D domain, 1D line integrals are evaluated
over the boundaries, and in a 3D domain, 2D surface integrals are evaluated over the boundaries.

2.4 Implementation

Solving a partial differential equation with a time-varying solution using the finite element method
typically consists of the following phases for each timestep:

Local Assembly. For each element i in the domain, an Ne × Ne matrix, Me
i , and an Ne-length vec-

tor, be
i , are computed, where Ne is the number of nodes per element. These are referred to as

8



Ω1 Ω2 Ω1 Ω2

1 2 3 1 2 1 2

Figure 2.7: Left: A 1D domain decomposed into two elements (Ωi). Right: Local node numbering
of individual elements.

local matrices and vectors. Computing these matrices and vectors usually involves the eval-
uation of integrals over the elements using Gaussian quadrature. In most implementations,
every element has the same number of nodes.

Global Assembly. The local matrices, Me
i , and vectors, be

i , are used to form a global matrix, M, and
global vector, b, respectively. This process couples the contributions of elements together.

Solution. The system of equations Mx = b is solved for x, often using an iterative method, which
requires computation of the sparse matrix-vector product (SpMV) y = Mv.

We shall examine the global assembly phase, which consists of performing the following compu-
tations:

M = ATMeA (2.8)

b = ATbe (2.9)

whereA is a matrix mapping the local node numbers of each element to the global node numbers,
Me is a block-diagonal matrix whose i-th block is Me

i , and be is a vector of stacked be
i . We shall

examine algorithms that can be used to implement these computations, as the optimal choice of
algorithm depends on the target hardware. Consider a two-element, three-node decomposition of
a 1-dimensional domain (see Figure 2.7). In this example, the matrices and vector are:

A =


1

1
1

1

 Me =


m1

11 m1
12

m1
21 m1

22
m2

11 m2
12

m2
21 m2

22

 be =


b1

1
b1

2
b2

1
b2

2


where me

ij is the i, j-th term of the local matrix for element Ωe, and be
i is the i-th term of the local

vector for element Ωe. The structure ofA arises from the geometry of the elemental decomposition
of the domain.

It is often inefficient to compute the matrix multiplications described in Equations 2.8 and 2.9
on traditional architectures due to the sparsity ofA. The Addto algorithm is usually more efficient.
To describe this algorithm, we first define an array, map[e][i], that maps the local node i of the
element e to a global node number. In our example, the array is defined as:

map[1][i] =
[

1
2

]
map[2][i] =

[
2
3

]
Algorithms 1 and 2 describe the Addto algorithm for computing M and b. Intuitively, terms of the
local matrix (or vector) of each element are summed into particular terms in the global matrix (or
vector) depending on the node numbers of the element.

These algorithms are massively data-parallel, as iterations of all the loops can be executed
independently of others. Although this appears to make them ideal for implementing on GPU
architectures, there are two issues. First, data races occur if threads concurrently update the same
term of the global matrix. Costly atomic operations must be used to ensure correctness. Second, M
is often stored using a format such as compressed sparse row (CSR). Finding the location in memory
of a particular term requires a bisection search of the sparsity structure of the matrix, leading to
uncoalesced accesses and control flow divergence within warps.
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Algorithm 1: Addto for global matrix assembly.

M = 0 ;1

foreach Element e do2

for i← 1 to Ne do3

for j← 1 to Ne do4

M[map[e][i], map[e][j]]+=Me[i, j] ;5

Algorithm 2: Addto for global vector assembly.

b = 0 ;1

foreach Element e do2

for i← 1 to Ne do3

b[map[e][i]]+=be[i] ;4

2.5 Conclusions

We have examined the Fermi architecture, and briefly discussed other multicore and manycore
architectures. These architectures bring considerable challenges when developing unstructured
codes, particularly due to their requirements for accessing data in a structured fashion. Further-
more, the need to marshal data onto and off the device and through the various levels of their
memory hierarchy further complicates code, and reduces its portability.

The finite element method is typically implemented using unstructured data and indirect ac-
cesses, which are unlikely to be efficient when implemented on manycore architectures. In the
following chapter, we will examine some of the techniques that have been used to overcome these
issues and improve performance.

10



Chapter 3

Literature Review

3.1 Introduction

As we have seen in the previous chapter, the implementation of finite element methods on many-
core architectures is challenging. In this chapter we examine how these issues have been tackled in
implementations that are described in the literature. In particular we will examine data structures,
partitioning of the data and the tasks between threads, and strategies for avoiding contention be-
tween parallel threads.

We begin by discussing the FEniCS project, which has worked towards the automation of
the finite element method. The outputs of the FEniCS project, in particular the Unified Form
Language, provide an appropriate level of abstraction for the finite element method that makes it
easy to develop and maintain codes, and allows flexible choice in the low-level implementation
and a choice of optimisations to be made. Presently the FEniCS project tools provide support
for CPU architectures only. We discuss how this work may be further extended to support the
generation of CUDA/OpenCL, using alternative data structures and algorithms that are more
efficient on manycore architectures.

We also examine alternative algorithms for implementing the finite element method, and dis-
cuss the impact that this has had on the performance of simulations with varying parameters on
CPU architectures. These algorithms can also be implemented on GPU architectures, but their
performance can be expected to vary differently in relation to the problem parameters.

Finally, we examine techniques that have been successfully used to generate optimised code
from high-level specifications in other areas of computational science. These domains include sig-
nal processing, cyber-physical systems, and tensor contraction computations for quantum chem-
istry. We discuss how these techniques may be applied in the generation of finite element solvers
from high-level specifications.

3.2 The FEniCS Project and UFL

There are a number of tools that are designed to make the implementation of finite element meth-
ods easier. These include libraries such as deal.II [Bangerth et al., 2007], Diffpack [Langtangen, 2003],
Sundance [Long, 2003], as well as the XFEM library [Bordas et al., 2007] for the extended finite ele-
ment method [Möes et al., 1999]. Domain-specific languages such as Analysa [Bagheri and Scott, 2004]
, FreeFEM [Hecht et al., 2005], GetDP [Dular and Geuzaine, 2005] and Hedge [Klöckner, 2010] have
also been developed.

We focus our discussion on the FEniCS project [Logg, 2007], as the tools from this project
provide complete automation of the finite element method. The main environment, DOLFIN
[Logg and Wells, 2010] is used to define and solve a Partial Differential Equation (PDE) problem,
allowing specification of the PDE, boundary conditions, the mesh, and timestepping. The Unified
Form Language is used for the specification of variational forms.

For a complete UFL reference, see [Alnæs and Logg, 2009]. We examine UFL with an exam-
ple that shows how it can be used to describe the assembly and solution of a partial differential
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equation. Poisson’s Equation, and a weak form are:

∇2u = f (3.1)∫
Ω
∇v · ∇u dX =

∫
Ω

v f dX (3.2)

We assume the boundary condition
∫

∂Ω v∇u · n ds = 0 to simplify the example. Figure 3.1
gives the UFL code for the assembly and solution of the weak form. Lines 1 and 2 instruct the
compiler that v and u are test and trial functions, which is known from the mathematical formu-
lation of the problem. The known function f is specified as a function of coordinates within the
domain. A and RHS specify the left- and right-hand sides of Equation 3.2. The final line specifies
that these forms are to be assembled into a linear system, which is solved to find the solution to
the problem. The solve keyword is an addition to UFL, which is usually provided by tools that
are part of the FEniCS project.

v=TestFunction(P)

u=TrialFunction(P)

f=Function(P, sin(x[0])+cos(x[1]))

A=dot(grad(v),grad(u))*dx

RHS=v*f*dx

P = solve(A,RHS)

Figure 3.1: UFL code for the assembly and solution of Poisson’s Equation. P is assumed to be some
finite element space over a mesh.

Note that UFL provides a means to give a complete specification of how the problem may be
solved using the finite element method, yet contains no implementation-specific information. This
provides the flexibility to generate code for multiple architectures, using alternative algorithms -
the code is effectively “future-proofed”. Compare this with a direct implementation in a low-level
language, for which it is difficult to transform the data layout or implementation algorithm. The
UFL compiler eventually commits to specific aspects of the low-level implementation during one
or more of its passes.

Although the example covers the specific forms in Poisson’s equation, the UFL formalism is
sufficiently flexible to allow the representation of any multilinear form. It can therefore be used to
describe the finite element formulation of any PDE.

Targeting a new platform is accomplished by the development of a new compiler backend,
without modifying the UFL sources. This allows the concerns of different developers to be sep-
arated: the work of mathematicians who test and implement new schemes is decoupled from
the work of those whose concern is the low-level implementation of codes. This separation eases
the development of finite element codes by eliminating a large proportion of the repetitive and
error-prone tasks that are usually required. The generated code can be better optimised than
handwritten code, as optimisations often cut across the boundaries of the abstractions required
for developing software in low-level languages.

3.2.1 UFL Compiler Optimisations

As a UFL Compiler is given a declarative specification rather than an imperative one, it is free to
make choices about how the generated code should implement the specification in order to opti-
mise performance. We shall consider an example of one of the choices the compiler may make.
First, we point out that it is not always efficient to assemble a matrix whenever the assignment
of a bilinear form is encountered. Instead, the best course of action depends on how the result-
ing matrix is subsequently used. For example, consider a portion of the assembly of a diffusion
scheme:
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M=p*q*dx # Mass matrix

rhs=action(M+0.5*d, t) # Right-hand side vector

A=M-0.5*d # Left-hand side matrix

In this example the mass matrix is not used as a matrix of coefficients in a system of equations,
but is only used as an intermediary matrix for the construction of the matrix A, and the right-hand
side vector. Assembling a full sparse matrix for M will be very costly in terms of memory usage,
and possibly in terms of computation required to construct the matrix sparsity pattern.

Since the mass matrix is not directly required, an efficient schedule for executing this code
may consist of fusing the loops that assemble the right-hand side vector and the matrix. After this
optimisation, the local matrices that make up the mass matrix may be assembled for each element
in the mesh at each iteration of the loop - this local matrix may then be used to compute the action
of the mass matrix on the local vector, and also added into the local matrix for A. At the end of an
iteration of the loop, the mass matrix is no longer required, and can be freed. To summarise the
effect of this optimisation, it avoids a Sparse Matrix-Vector (SpMV) product being computed for a
very large sparse matrix, replacing it with many small, dense matrix-vector multiplications.

Whether it is more efficient to fully assemble the mass matrix or to only ever assemble its
local matrices depends upon the target architecture. This example demonstrates that there is an
optimisation space to be explored, and that differs between architectures. Furthermore, the user
of UFL need not consider this optimisation space as it is abstracted away.

There are further examples of optimisations that can be made without modifying the UFL
sources. Other optimisations that we describe throughout the remainder of this chapter can be
implemented in a UFL compiler and effectively hidden from the end user. These optimisations
affect aspects of the code including:

• The structure of the assembly loop. This structure determines the number of elements the
loop operates on concurrently, how the kernels are fused.

• Changes to the layout of data structures representing the mesh and associated data, and its
alignment.

• Partitioning the computational workload and re-ordering of computations in order to avoid
inefficient operations.

• The algorithms used to implement the global assembly phase.

3.3 The Implementation of the Finite Element Method on GPUs

There are a number of implementations of finite element methods on GPUs that are described in
the literature. These implementations have been applied to fields including earthquake modelling
[Komatitsch et al., 2009, Komatitsch et al., 2010], electromagnetic scattering [Klöckner et al., 2009,
Klöckner, 2010], hyperelastic material simulation [Filipovic et al., 2009a, Filipovic et al., 2010], and
surgical simulation [Miller et al., 2007, Taylor et al., 2007, Taylor et al., 2008, Comas et al., 2008]. In-
vestigations into the implementation of the local assembly phase have shown that performance
on the GPU can vary between problems with various parameters [Maciol et al., 2010]. Some im-
plementations of multigrid solvers on GPUs are used to accelerate the solution phase of the finite
element method, including [Turek et al., 2010, Göddeke et al., 2009]. However, we exclude discus-
sions of linear solvers from our review as they do not make up part of the finite element assembly
process. In the remainder of this section we examine the techniques used to implement the finite
element method efficiently on GPU architectures.

3.3.1 Data Layout and Alignment

One approach [Klöckner et al., 2009] described in the literature involves partitioning the mesh into
small chunks that can be co-operatively loaded into shared memory by a thread block, before com-
putation proceeds on this data. Since data is reused between elements that share a face, it is more
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Figure 3.2: Data layout for threads to co-operatively load element data from a small partition into
shared memory. From [Klöckner et al., 2009].

efficient to try to load in a set of elements that share as many faces as possible. This can be achieved
by partitioning the mesh into many very small partitions that consist of the maximum number of
elements that can be loaded into shared memory. It has been reported that standard partitioning
tools (such as [Karypis and Kumar, 1998]) fail to work efficiently for creating such partitions, as
they are designed with partitioning a mesh into fewer, larger sets in mind [Klöckner et al., 2009].
Instead, a simple greedy partitioning algorithm has been shown to be effective for this purpose.

Given the variety of finite element types [Raviart and Thomas, 1977, Brezzi et al., 1985, Brezzi et al., 1987,
Nedelec, 1980, Crouzeix and Raviart, 1973] and the various orders of their polynomial bases, it
will often be the case that the number of floating-point values required for representing the data
for a single element will not be a multiple of 16 (the most amenable size for achieving coalescing),
it is necessary to consider the size of the elements when determining their data layout. A scheme
that allows coalescing involves packing together element data for several elements that require
less than 64 bytes. The remaining space from the end of the element data up to 64 bytes is then
filled with padding. When using this data structure, half-warps can co-operate to load element
data. Although some space and bandwidth is wasted, this scheme avoids the need for compli-
cated calculations for loading the correct data for each element whilst still obtaining coalescing.
This scheme will have the poorest performance in the case where the element data requires just
over 8 floats, since it will not be possible to fit another element’s data within the same 64 bytes,
so the wastage due to padding will be close to 50%. Figure 3.2 shows an example of this scheme
for element data that requires 5 floats per element. Three elements can be packed together with 4
bytes (1 float) for padding.

3.3.2 Mesh Reordering

The Reverse Cuthill-Mckee algorithm [Cuthill and McKee, 1969] reorders the nodes of a mesh so
that the non-zero terms of the corresponding matrix are pushed as closely towards the main di-
agonal as possible. Although this does not make the finite element assembly run any faster, it
can increase the speed of the SpMV operation in the solver due to the increased locality in the
source vector. Figure 3.3 shows the global matrix for a mesh before and after the reordering is
performance.

On CPU architectures, the reordering has a beneficial effect since CPU caches are large. The
reordering has been implemented in a GPU solver [Göddeke et al., 2005], although it made little
difference to the performance due to the lack of a hardware-managed cache on the platform upon
which it was tested (the NVidia G80). Since the Fermi architecture has a small hardware-controlled
cache on each SM, it is expected that this reordering will have some performance benefit.

3.3.3 Kernel Granularity and Kernel Fusions

It is relatively straightforward to decide how to parallelise very fine-grained and very coarse-
grained operations on GPUs. For the fine-grained operations, using a single thread per output is
usually sufficient. Coarse-grained operations may be implemented by using an entire thread block
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Figure 3.3: A sparse matrix before and after Reverse Cuthill-McKee reordering.

(consisting of between 64 and 1024 threads) to produce a single output. It has been identified in
[Filipovic et al., 2009a] that there are a number of operations in finite element assembly that do
not easily fit into either of these categories, and are termed medium-grained operations. These
operations typically require between 3 and 12 threads to compute a single output efficiently.

The granularity of operations presents an issue due to the tradeoff between kernel code size
and intermediate storage size. It is desirable to perform as many operations as possible in a single
kernel (as opposed to spreading operations over multiple kernels), reducing the need for inter-
mediate storage of values in global memory. Because of the large data-parallelism of operations
on the GPU, many intermediate values must be stored between invocations of different kernels,
consuming a significant amount of memory bandwidth and space. However, as kernel code size
increases, the number of registers required per thread also increases. Since registers are limited,
larger and more complex kernels have to be executed using fewer concurrent threads, which re-
duces performance. Choosing the boundaries between kernels in the implementation of an oper-
ation is a non-trivial task.

It has been outlined that splitting each operation into a single kernel is not the optimal choice -
experimental results in [Filipovic et al., 2009a] show that fusing some operations increases perfor-
mance, due to the aforementioned reduction in memory bandwidth usage. Regarding the granu-
larity of operations, it is noted that fusing two operations of differing granularity produces a single
kernel, a subset of whose threads are idle for part of the execution. Although some inefficiency has
been introduced, can be a worthwhile trade-off, due to a reduction in the global memory accesses.

Figure 3.4 gives an example of the fusion of kernels of differing granularity. In this example,
operation O3 reads in the intermediate results written out by O1. Therefore, operations O1 and
O3 can be rearranged and fused. The portion of the new kernel from O3 will leave two thirds of
the threads idle. However, a write and read of intermediate results between these two kernels is
eliminated.

A general methodology for producing an implementation with fusions is described in [Filipovic et al., 2009a].
Here, we attempt to summarise the basic step of this methodology, referred to as the decomposition-
fusion scheme:

1. Produce an implementation that is made up from a set of kernels that each perform a single
operation. This implementation can be considered the fully-unfused implementation.

2. Determine which kernels to fuse. There is presently no concrete strategy for making this
choice. The authors determine which kernels should be fused by benchmarking each of the
individual kernels. Two kernels K1 and K2 may be considered candidates for fusion if:

• K1 produces intermediate results that are consumed by K2.
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Figure 3.4: Fusing kernels of different granularities. Left: Unfused kernels store results in global
memory. Right: One pair of kernels is fused. From [Filipovic et al., 2009b].

• At least one of the kernels has high bandwidth utilisation and low computational in-
tensity (in terms of GFLOPS/sec).

3. Create a new implementation in which the fusion candidates are fused.

4. Steps 2 and 3 may be repeated, until there are no fusion candidates.

Although this scheme can be used to produce implementations with a reasonable choice of fu-
sions, there are several problems. Producing hand-implementations of the unfused implementa-
tion is quite tedious. The criteria for finding fusion candidates are not well-defined. Furthermore,
producing the implementations of the fused kernels will be a tedious and error-prone manual
process. It is concluded that although it is necessary to search for an optimal fusion combination
to obtain the highest performance on GPU architectures, it would be highly desirable to automate
this process. The decomposition-fusion scheme will be impossible to implement practically in a
general-purpose compiler, as it will be too difficult to perform an analysis that provides enough
information to automate the fusion. However, a compiler for a domain-specific language can be
made to produce a variety of fused and unfused kernels. The choice of which kernels are the
optimal ones may be guided by the development of a performance model, or by a profile-guided
algorithm.

3.4 Colouring and Partitioning

Due to the parallel operation of the GPU, it is inevitable that there will be some contention when
writing data. For example, if two elements share a node, the threads performing computation for
each of these elements will both need to update the same location. In order to prevent data races,
techniques that can be used include the use of atomic operations, or colouring schemes.

The CUDA and OpenCL programming models provide support for certain atomic operations
that can be used to implement atomic arithmetic operations on floating point numbers. Although
these operations ensure consistency, they can have a large impact on performance.

Colouring schemes may be used to remove the need for atomic operations, by ensuring that
entities whose updates may be in conflict have different colours. The execution proceeds in paral-
lel over each colour, but each colour is processed sequentially. This prevents any contention.

It usually sufficient to perform the colouring using the Welch-Powell algorithm [Lipschutz and Lipson, 1997],
which is a simple greedy algorithm, and is detailed in Algorithm 3. This algorithm is often suffi-
cient as it is guaranteed to colour a graph with chromatic number ∆ using ∆ + 1 colours.
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Algorithm 3: The Welch-Powell algorithm for colouring a graph G. From
[Lipschutz and Lipson, 1997].

Order the vertices of G according to decreasing degrees ;1

Assign the first colour C1 to the first vertex and then, in sequential order, assign C1 to each2

vertex which is not adjacent to a previous vertex which was assigned C1 ;
Repeat Step 2 with a second colour, C2 and the subsequence of non-coloured vertices ;3

Repeat Step 3 with a third colour, C3, then a fourth colour, C4, and so on until all vertices are4

coloured.

The use of a colouring scheme for avoiding atomic operations has been successfully applied
in the development of a large-scale earthquake model written in CUDA [Komatitsch et al., 2009,
Komatitsch et al., 2010].

3.4.1 Oplus2

OPlus2 [Giles, 2010] is a general framework for programming unstructured mesh applications on
GPUs that is currently under development. We draw attention to the proposed colouring scheme
for avoiding atomic operations, in which the colouring is performed at two levels:

• In the first level of colouring, a partitioning of the mesh into chunks that are small enough
to be loaded into shared memory is made. These partitions are coloured such that no two
adjacent partitions share a colour. This allows chunks of the mesh to be loaded into shared
memory and computed over by concurrently operating threads, without the risk of con-
tention. A separate kernel invocation is used for each different colour of partition.

• The edges within partitions are also coloured, since OPlus2 performs computations on an
edge-by-edge basis, rather than a node-by-node basis. The colouring for each partition is in-
dependent of the colourings in other partitions. This colouring is used within the execution
of one thread block on the chunk in shared memory. Executing kernels loop over the colours
within the partition, to ensure that there is no contention between threads within a block.

It is expected that a similar 2-level scheme may be applied on a node-by-node basis to a mesh
in order to perform computations on data in shared memory in a finite element method imple-
mentation in CUDA. However, the colouring is not strictly necessary in combination with the
partitioning if the Local Matrix Approach to the Global Assembly phase is adopted (See Section
3.5.1 below).

3.5 Algebraic Transformations

The finite element method can be thought of as the composition of various algebraic operations
on tensors [Kay, 1988]. It is possible to make transformations using algebraic operations in order
to derive equivalent formulations of a method. These transformations can increase the efficiency
of the method, either by reducing the operation counts, or by generating algorithms that are more
amenable to the target hardware.

In this section, we examine two transformations that are discussed in the literature; it is hy-
pothesised that these transformations are just two of a large number of possibilities that may be
generated, and that each of the possible implementations will have different performance charac-
teristics on different architectures.

3.5.1 Transforming the Global Assembly Phase

It was highlighted in Section 2.4 that the Addto algorithm is unlikely to be efficient on the GPU
due to its indirect accesses of data structures. Here we describe how the formulation of Equation
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2.8 (representing the Global Assembly phase) may be transformed to avoid the use of the Addto
algorithm.

An alternative algorithm, referred to as the Local Matrix Approach (LMA), is derived by noting
that the only use of M is for computation of the product Mv in the solution phase. We omit the
global assembly of M (Equation 2.8) altogether, and when computation of y = Mv is required, the
following computation is performed:

y =
(
AT (Me (Av))

)
(3.3)

This transformation involves making use of the associativity of matrix-matrix multiplication to
transform the chain matrix multiplication of Equation 2.8 and the Matrix-vector product Mv into
the three matrix-vector products of 3.3. It is not possible to avoid the assembly of b, as it is
explicitly required by the solver. However, we can eliminate the use of the Addto algorithm by
computing the matrix-vector product b = ATbe using an SpMV kernel.

We note that that the Local Matrix Approach uses more memory bandwidth and computations
than the Addto algorithm. However, this increase in operations may be amortised by the reduc-
tion in the use of inefficient memory accesses required by the Addto Algorithm. It has been shown
in [Vos et al., 2009] and [Cantwell et al., 2010] that the Local Matrix Approach is more efficient than
the Addto algorithm for certain polynomial bases when solving two- and three-dimensional prob-
lems in CPU implementations.

3.5.2 Evaluation of Integral Forms by Tensor Representation

The FEniCS Form Compiler [Kirby and Logg, 2006] makes use of algebraic rearrangements to op-
timise computations in the finite element method. Some of these optimisations are described
in [Logg, 2007]. In this subsection we reproduce the workings of one of the simpler optimisa-
tions based on an algebraic transformation. This optimisation reduces the number of operations
required when evaluating integrals using Gaussian quadrature. This is achieved by making a
change that allows more of the computational work to be performed on the reference element.
This reduces the work needed to transform the solution from the reference element to the phys-
ical element. Since the evaluation over the reference element is only performed once, whereas
the transformation is performed for every element, this optimisation greatly reduces the compu-
tational cost of the overall computation.

We consider a transformation that may be applied when the mapping from the reference ele-
ment to the physical element is affine. We consider a Laplacian form that may be evaluated using
Gaussian quadrature as follows:

Me
K[i, j] =

∫
ΩK
∇v · ∇u dX =

Nq

∑
q=1

Ndim

∑
α=1

wq
∂φi

∂Xα
(ξq)

∂φj

∂Xα
(ξq)|JK| (3.4)

where wq is a quadrature weight, JK is the Jacobian of the transformation from reference space
to physical space, and φ is a basis function in physical space. In order to derive the form that
performs the transformation by a tensor contraction, we first write the dot product in the integral
in terms of its components:

Me
K[i, j] =

∫
ΩK
∇v · ∇u dX =

∫
ΩK

Ndim

∑
α=1

∂φi

∂Xα

∂φj

∂Xα
dX (3.5)

Next, we can make a change of variables from the physical coordinates to the coordinates on the
reference cell, giving:

Me
K[i, j] =

∫
ΩK

Ndim

∑
α=1

Ndim

∑
β1=1

∂ξβ1

∂Xα

∂Φi

∂ξβ1

Ndim

∑
β2=1

∂ξβ2

∂Xα

∂Φj

∂ξβ2

|JK| dX (3.6)
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where ξ is a coordinate on the reference cell, and Φ is a basis function on the reference cell. Since
the mapping from the reference element to the physical element is affine, the sums ∑Ndim

β
∂ξ
∂X and

the determinant |JK| are constant throughout the element, and can be moved outside the integral:

Me
K[i, j] = |JK|

Ndim

∑
α=1

Ndim

∑
β1=1

∂ξβ1

∂Xα

Ndim

∑
β2=1

∂ξβ2

∂Xα

∫
ΩK

∂Φi

∂ξβ1

∂Φj

∂ξβ2

dX (3.7)

This can be written as a tensor contraction:

Me
L[i, j] =

Ndim

∑
β1=1

Ndim

∑
β2=1

AijβGβ
K ⇒ Me = A : GK (3.8)

where

Aijβ =
∫

ΩK

∂Φi

∂ξβ1

∂Φj

∂ξβ2

dX, Gα
K = |JK|

Ndim

∑
α=1

∂ξβ1

∂Xα

∂ξβ2

∂Xα
(3.9)

This optimisation reduces the number of arithmetic operations required from Nqn2
0d to d3 +

N2
0 d2 ∼ n2

0d2 where Nq is the number of quadrature points, n0 is the polynomial order of the basis,
and d is the number of dimensions. Since the number of dimensions is almost always 2 or 3, the
reduction in operations is roughly a factor of Nq, which can be a significant reduction for high
order basis functions.

We remark that although this particular example is specific to the Laplacian form, the key part
of this optimisation is the change of variables, which may be applied to any integral form. There
are other examples of similar optimisations that may be used in cases when the transform from
the reference element to the physical element is not affine, discussed in [Kirby and Logg, 2006]
and [Logg, 2007].

It is thought that this transformation is part of a more general class of transformations that
reduces the operation count of constructing the global matrix and global vector. These operations
are based around rewriting terms under an integral, in order that part of the rewritten term be-
comes constant over an element. These newly-created constant terms can be moved outside the
integral in order to reduce the complexity of the computations that need to be performed for every
element.

3.6 Related Areas

In this section we examine literature that is not directly related to the finite element method, but
from which we can draw ideas that may integrate well with the proposed research. We suggest
how these ideas may be relevant to the development of our project.

3.6.1 Library Generators

A number of tools for generating optimised libraries for specific domains exist, including Built To
Order BLAS [Belter et al., 2009, Jessup et al., 2010] for linear algebra, SPIRAL [Püschel et al., 2005]
for DSP transforms, and the Tensor Contraction Engine [Auer et al., 2006]. We discuss SPIRAL and
the Tensor Contraction Engine in more detail below in order to discuss concepts that could also
be applied to the generation of finite element solvers.

SPIRAL

SPIRAL [Püschel et al., 2005] is a platform for generating highly efficient code for DSP transforms.
The motivation for its development is the observation that traditional compilers do a poor job
of optimising C code for DSP transforms. This is because the C code contains no semantic in-
formation regarding the choice of algorithm, so the compiler is forced to make the most general
assumptions about the code, inhibiting optimisation.
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DSP transforms are defined using the Signal Processing Language (SPL), which uses a matrix
algebra representation. SPL constructs are manipulated according to a set of rules that allow a
complex transform to be rewritten in terms of simpler ones (e.g. the Cooley-Tukey rule), or that
perform algebraic rewrites by using matrix identities. These rules may be repeatedly applied to
generate a broad class of algorithms that perform the same computation.

The various implementations are converted into an SSA-form [Aho et al., 2006] intermediate
representation (Σ-SPL). Standard optimisations including loop unrolling, intrinsic precomputa-
tion, common subexpression elimination etc. are applied to this representation. These optimised
representations are converted to scalar C code or vector code using intrinsics for the target plat-
form. The choice of vector intrinsics is influenced by a description of the available operations on
the target hardware. A similar process is used to generate code for multiprocessor systems and
GPUs, although this work is still under development [SPIRAL Project, 2010].

There is a large variation in the performance of the generated implementations of transforms.
In order to select the best implementations, learning and search techniques are used. The learning
framework is used to prune the search space by removing candidate implementations that are
expected to perform poorly, based on automatically built performance models of the operations
that constitute each implementation. Dynamic programming [Bellman, 2003] and evolutionary
search [Goldberg, 1989] are used to find the best candidates in the remaining space of possible
implementations.

We remark that there is almost a direct analogy between SPIRAL and the FEniCS tools. In
both projects, high-level domain-specific languages are used as a source from which to generate
optimised code. It is conjectured that the techniques used in SPIRAL to generate efficient DSP
transforms may be translated to generate efficient implementations of finite element codes on
GPUs. In particular, the idea of using a rulebase to guide transformations of an algorithm is
applicable to the finite element method, as demonstrated in Section 3.5. The generation of a space
of possible implementations of finite element algorithms may also necessitate mechanisms for
pruning the search space.

We also note that techniques for searching for the optimal implementation may also be applied
at a lower level: there is a space of possible kernel fusions that may be made, and some mechanism
for searching this space will be required. Additionally, characteristics of the target hardware such
as the L1 cache size, the number of SMs on the device, and the number of registers etc. may form
part of a performance model that is used to guide this search.

The Tensor Contraction Engine

The Tensor Contraction Engine [Auer et al., 2006, Baumgartner et al., 2002] is used for searching
for the best implementation of tensor contractions, given restrictions on storage space at various
memory hierarchy levels. We consider an example given in [Baumgartner et al., 2002]:

Sabij = ∑
cde f kl

Aacik × Bbe f l × Cd f jk × Dcdel (3.10)

This expression may be evaluated using ten nested loops in 4× N10 operations, where the range
of each index is N. The same result can be computed in 6× N6 operations by rearranging the
expression:

Sabij = ∑
ck

(
∑
d f

(
∑
e f

Bbe f l × Dcdel

)
× Dd f jk

)
× Aacik (3.11)

However, this new expression requires a large amount of temporary storage, which may exceed
the memory capacity of the target machine. There are a large set of expressions that perform an
equivalent computation to Equations 3.10 and 3.11, requiring various amounts of computation
and storage. Manipulation of the tensor expression to produce various different versions is rela-
tively straightforward, especially using a package such as Matlab [MathWorks, 2009]. However,
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continuous (* Pendulum physics *)

m = 5.0; g = 9.81; l = 3;

I = m * l^2;

F*l*cos(theta) - m*g*l*sin(theta) = I*theta’’;

boundary conditions

theta with theta(0) = 0.1, theta’(0) = 0;

Figure 3.5: An Acumen description of the physics of a pendulum. Note that theta is an indepen-
dent variable that changes over time. From [Zhu et al., 2010].

producing an implementation of the computation and benchmarking it requires a relatively large
effort to implement the trivial code needed to implement each expression.

In order to overcome this problem, the TCE provides a domain-specific language for writing
down a tensor expression. An optimal implementation of the expression that requires a minimal
amount of computation given memory and disk space limits is searched for, and an implemen-
tation is automatically generated. This greatly reduces the burden on the programmer in imple-
menting tensor contraction operations.

A similar situation arises in the implementation of finite element methods on GPUs. Using a
greater number of smaller kernels increases the total number of threads that can run concurrently
and increases performance. However, using more kernels requires more intermediate storage
arrays. In this case, the use of memory bandwidth rather than memory space becomes an issue, as
the performance of the kernels becomes limited by their ability to transfer data to and from global
memory. Out of these possible implementations, a search is required to find the optimum kernel
granularity subject to the constraints on the occupancy of individual kernels.

3.6.2 Acumen

The Acumen system [Zhu et al., 2010] provides the user with a domain-specific language for spec-
ifying the ordinary differential equations governing a mechanical system. Figure 3.5 gives a short
example of the Acumen source describing a pendulum. The Acumen compiler performs some
analysis and transformation on the equations in the source file, in order to transform them into a
system that can be stepped forward in time using a Runge-Kutta method.

The system of equations go through several phases of analysis and transformation in order to
reach their final form, including a defined variable analysis, binding time analysis, and symbolic
differentiation. A key contribution of the Acumen system is the binding time analysis, that is
used to provide information to the symbolic differentiation phase that allows it to reduce the
complexity of the generated expression. In contrast, tools such as Matlab must make more general
assumptions about equations they are differentiating symbolically, leading to the generation of
much larger expressions than are required.

Although we do not cover this defined variable analysis in detail, we note that at the heart of
this transformation is the concept of using domain-specific knowledge to reduce the complexity
of the generated code. The use of similar analyses in the finite element context might be used to
reduce the complexity of the code for evaluating multilinear forms, perhaps as part of a system
that performs algebraic transformations of the forms.

3.6.3 Autotuning Libraries

Self-tuning libraries for particular domains maximise performance on a particular target by per-
forming extensive benchmarking and tuning at installation time. There are examples of these li-
braries for a number of different domains, including ATLAS [Whaley and Dongarra, 1998, Whalley, 2005]
for linear algebra, OSKI [Vuduc et al., 2005, Vuduc, 2003] for sparse matrix operations, and FFTW
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[Frigo and Johnson, 2005] for Fourier transforms. The search performed at installation time can
be very time-consuming, but only needs to be performed once.

Since the performance characteristics can vary from machine to machine depending on factors
such as the number of cores, number of processors, size and latency of each level in the memory
hierarchy etc., the use of automatic tuning ensures that the best possible implementation is used
on each machine. In relation to implementations of the finite element method, we note that the
search space of implementations when considering various algebraic rewrites as well as kernel
fusions and other optimisations may become large. In the absence of more sophisticated search
techniques, performing brute-force autotuning to generate the best implementation of a solver for
a particular UFL source may be an option.

3.6.4 Active Libraries

Active Libraries [Czarnecki et al., 2000] perform optimisation of computations by generating spe-
cialised implementations, at runtime or at compile time using expression templates. Active li-
braries include DESOLA for linear algebra [Russell et al., 2008], Blitz++ [Veldhuizen, 1998] and
the Matrix Template Library [Siek, 1999] for matrix operations, and Bernoulli for sparse matrix
operations [Ahmed et al., 2000].

A feature that these libraries have common is that they are all designed to be used from inside a
low-level language, such as C++, rather than as part of a domain-specific language. Since the UFL
representation is high-level and retains necessary semantic information about the computations,
it is difficult to map the techniques used by active libraries onto code generation of finite element
methods using UFL.

3.6.5 Formal Linear Algebra Methods Environment

The Formal Linear Algebra Methods Environment (FLAME) [Gunnels et al., 2001, Bientinesi et al., 2005]
systematises the development of linear algebra algorithms and their translation into code. In order
to derive an algorithm, a worksheet is filled in according to conditions on the input and expected
output of the algorithm, and also conditions that are required to hold throughout the execution of
the algorithm. The completed worksheet specifies the resulting algorithm in an inductive fashion.
Although the worksheet must be filled in by hand, there have been some efforts directed towards
automatically deriving the filled-in worksheet [Bientinesi, 2006]. The methodology has recently
been extended to the derivation of Krylov-subspace solvers [Eijkhout et al., 2010] (examples of
Krylov-subspace solvers include the conjugate gradient and GMRES methods).

It is remarked that there is a similarity between the work in [Bientinesi, 2006] on automatically
deriving new algorithms, and the techniques used to derive new implementations by making
algebraic transformations in SPIRAL, and those described in Section 3.5. The inductive nature of
the algorithms produced by worksheet fill-in are substantially different from any of the known
algebraic transformations of finite element operations. However, it is possible that formulations
of the finite element method in terms of tensor contractions can be treated in this fashion. This
could be investigated if it is difficult to find transformation rules of finite element operations in
terms of algebraic operations.

3.7 Conclusions

We have examined the Unified Form Language from the FEniCS project, which provides a means
for declaratively specifying a finite element method. Since the UFL representation is completely
independent of the underlying implementation, all of the optimisation techniques that have been
examined throughout this chapter may be implemented in a UFL compiler without exposing them
to the user. The compilation and optimisation techniques that can be pursued as part of further
investigations can be summarised as follows:

22



Data layout transformations. Partitioning and padding techniques that allow more effective use
of the memory hierarchy have been described in Sections 3.4 and 3.3.1 respectively.

Colouring. Using colouring schemes avoids the need for atomic operations on GPUs, increasing
efficiency. The OPlus2 two-level scheme works in conjunction with partitioning, and imple-
mentation of this scheme should be investigated.

Kernel Granularity. Section 3.3.3 outlined the necessity for choosing the appropriate level of
granularity of kernels, and described a scheme for finding an efficient choice of kernel fu-
sions.

Algebraic Transformations. In Section 3.5, two examples of algebraic transforms are outlined. It
is hypothesised that many algebraic transforms are possible, and that these possible trans-
forms may be enumerated as a set of transformation rules. The implementation space gener-
ated by these transformations may be explored using techniques similar to those in SPIRAL
and the Tensor Contraction Engine, described in Section 3.6.1.

Automatic Tuning. Automated search and tuning techniques (Section 3.6.3) can be used in con-
junction with techniques that generate a space of possible implementations, including an
algebraic transformation system and a lower level system for generating implementations
of different kernel granularities.

Manual investigations of these areas will be time-consuming. In order to reduce the time taken
to perform investigations, and to work towards the eventual goal of providing tools that automat-
ically generate efficient GPU implementations of finite element solvers from high-level sources,
it is pragmatic to begin by implementing a UFL compiler that generates GPU implementations.
This can then be followed by the implementation of these transformations and optimisations in
the code generator. The following chapter describes preliminary investigations into some of these
areas that have already taken place. Chapter 5 goes on to describe a plan for carrying out this
research over the course of the PhD.
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Chapter 4

Preliminary Investigations

4.1 Introduction

In this chapter we describe some experiments that investigate the performance of two algorithms
for the global assembly phase on the GPU, and a prototype implementation of a UFL compiler.
The content of this chapter has been published as part of [Markall et al., 2010c].

A complete implementation of a test problem has been developed that executes all computa-
tions on the GPU, and this is used as the basis for our experiments. We also discuss a data layout
transformation that was necessary to obtain coalescing, and therefore make use of a substantial
portion of the available memory bandwidth of the device. These experiments show that the opti-
mal algorithm depends on the target hardware.

The implementation of the prototype UFL compiler that generates CUDA code is also de-
scribed. The performance of the generated code is not investigated, but instead we use the ex-
perience gained from this exercise to map out the future work that needs to be done in order to
implement a more complete compiler.

4.2 Data Format Considerations

In general, data structures must be carefully chosen to achieve optimal performance (e.g. for
cache-optimality on a CPU), and the optimal choice of data structure depends on characteristics
of the target architecture. In order to examine the structures that can be used when implementing
the finite element method on CPUs and GPUs, we consider a three element domain (see Figure
4.1).

In CPU implementations, nodal data is often stored on a per-node basis. When data for the
nodes of a single element is needed, the mapping array (map) is used to indirectly access the nodal
data. Although this can lead to poor cache performance due to random access into the nodal data
structure, reordering optimisations can be used to minimise this overhead.

This data format is inefficient for GPU implementations, where coalesced accesses must be
used to maximise memory performance. It is difficult to achieve coalesced access because the
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Figure 4.1: Left: A 2D domain decomposed into three elements. Middle: Node data layout in CPU
implementation. Right: Node data layout in GPU implementation. Threads accessing data in
different elements (arrowed) achieve coalescing.
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nodal data structure is accessed in a somewhat random fashion. We propose that it can be more
efficient to store nodal data on a per-element basis in GPU implementations, interleaving the nodal
data for each node of each element. This leads to some redundancy in the storage of nodal data,
again proportional to the average variance of nodes; however, it allows coalesced accesses when
there is a one-to-one mapping between threads and elements.

4.3 Experiments

We evaluate the performance of the Addto algorithm and the Local Matrix Approach on GPUs
using an implementation of a test problem that solves the advection-diffusion equation:

∂T
∂t

+ u∇T = ∇ · µ · ∇T

where T is the concentration of a tracer, t is time, u is velocity, and µ is a rank-2 tensor of diffusivity.
This problem is chosen as it is both a sub-problem and simplified model of a full computational
fluid dynamics system. The system is discretised using order-1 basis functions. A split scheme
is used, solving for advection first and then diffusion at each time step. The advection term is
timestepped using a 4th-order Runge-Kutta scheme, and the diffusion term is timestepped us-
ing an implicit theta scheme. The problem is solved over a square domain with suitable initial
conditions. We compare with a CPU implementation to demonstrate that the optimal choice of
algorithm depends on the target hardware.

4.3.1 CUDA and CPU Implementations and Experimental Setup

CUDA Implementations of the solver that implement both the Addto algorithm and the Local Ma-
trix Approach have been produced. The Local Matrix Approach is implemented by considering
the computation in Equation 3.3 in three stages:

t = Av︸ ︷︷ ︸
Stage 1

, t′ = Met︸ ︷︷ ︸
Stage 2

, y = ATt′︸ ︷︷ ︸
Stage 3

.

Since A contains only one non-zero entry per row that is always 1, Stage 1 is implemented as
a gather. This involves uncoalesced memory accesses but is more efficient than using an SpMV
kernel. The implementation of Stage 2 exploits the block-diagonal structure of Me to achieve
coalesced accesses and maximal reuse of matrix values. Stages 1 and 2 are implemented in a single
kernel. Stage 3 is implemented as an SpMV kernel that is optimised for all the non-zero values
equalling 1. Because a global barrier is required between Stages 2 and 3, Stage 3 is implemented
in a separate kernel.

The baseline version is implemented within Fluidity because it is a mature and optimised CPU
implementation. The Local Matrix Approach is not implemented in this version, as it is known to
be less efficient than the Addto algorithm on CPUs for low-order basis functions [Vos et al., 2009].
Node data structures are implemented using the element-wise storage layout in the CUDA imple-
mentation, and the node-wise layout is used in the CPU implementation.

The test hardware consists of an Intel Core 2 Duo E8400, 2GiB RAM, and an NVidia 280GTX
GPU. The Intel v10.1 compilers with the -O3 flag were used for the CPU code (v11.0 onwards can-
not compile Fluidity due to compiler bugs), and the CUDA SDK 2.2 is used for CUDA code. The
CUDA implementation uses a Conjugate Gradient (CG) solver described in [Markall and Kelly, 2009];
the baseline version make use of the PETSc [Balay et al., 2009] CG solver. The simulation is run for
200 timesteps, with all computations using double precision arithmetic. Gmsh [Geuzaine and Remacle, 2009]
was used to generate meshes varying in size between 28710 and 331714 elements. Each simulation
was run five times, and averages are reported.
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4.3.2 Results

Figure 4.2 shows the total time taken by each CUDA implementation to run the entire simulation.
Figure 4.3 shows their speedup relative to the baseline version running on 2 cores. We see that the
LMA implementation is up to 2.2 times faster than the Addto implementation on the GPU, and is
over an order of magnitude faster than the baseline implementation.
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Figure 4.2: Total execution time of GPU implementations.

Figure 4.4 shows the total time taken for the local and global assembly phases in the CUDA
implementations. We observe that the Local Matrix Approach is faster than the Matrix Addto al-
gorithm, and that it is faster to assemble the global vector by computing the productATbe. Figure
4.1 shows the total time spent inside the SpMV kernels for each implementation for the largest and
smallest mesh sizes. The cost of computing

(
AT (Me (Av))

)
(in the LMA implementation) is up to

2.5 times that of computing Mv (in the Addto implementation). The performance increase of the
LMA implementation is a tradeoff between the decrease in the assembly time, and the increase in
the SpMV computation time.

Elements
(
AT (Me (Av))

)
Mv

28710 1.91× 106 8.48× 105

331714 2.45× 107 9.85× 106

Table 4.1: Total time spent computing each product on the largest and smallest meshes (in µsec),
recorded using the CUDA Profiler.

We also investigated using graph colouring to eliminate atomic operations in the Addto im-
plementation (as used in [Komatitsch et al., 2009]). We replaced atomic operations with equiva-
lent non-atomic operations. The resulting implementation produced incorrect results, but gave an
upper bound on the performance increase facilitated by colouring. The assembly phase ran 25%
faster with non-atomic operations, corresponding to a 10% speedup in the entire simulation. Since
the performance of the LMA implementation is far greater than this, it is unnecessary to produce
an implementation that uses colouring.
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Figure 4.3: Speedup of GPU implementations relative to the baseline executing using 2 cores.
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Figure 4.4: Execution time of the assembly phases for each CUDA implementation.
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4.4 Further Investigations

Our results show that the optimal algorithm depends on the target architecture. We speculate that
it is also problem-dependent. In a 2D domain the average variance of nodes is approximately
6. In a 3D domain, the variance is around 24, and the overheads of storage and computation for
the local matrix approach are four times greater than in 2D. This extra overhead may decrease
performance to the point where it is more efficient to use the Addto algorithm. Our further work
involves investigating the performance in this case.

4.5 A Prototype Compiler

A first step in experimenting with generating CUDA code from UFL involved the implementation
of a compiler that performs a syntax-directed translation of the UFL code to CUDA code. The gen-
erated code uses a library of kernels that perform common operations in finite element assembly.
A subset of the kernels in this library are shown in Table 4.2. These kernels perform quadrature-
based assembly, rather than the tensor-based method that is used in the FEniCS project.

The compiler inputs UFL using the FEniCS UFL distribution [Alnæs and Logg, 2009] to pro-
duce Directed Acyclic Graphs (DAGs) of the operations specified in a UFL source. Each DAG
node is converted to a call to a kernel implementing the required operation. This DAG of kernel
calls is passed to a code generator that is implemented using the ROSE Compiler Infrastructure
[Quinlan et al., 2009]. Examples of the DAGs for the left-hand side of Equation 3.2 are shown in
Figure 4.5.

v u

∇v ∇u

∇v · ∇u

A

(a) Expression DAG.

tform shape(v) tform shape(u)

tform dshape(v) tform dshape(u)

dshape dot dshape

mat addto

(b) Kernel DAG.

Figure 4.5: DAGs for the form
∫

Ω∇v · ∇u dX.

Kernel Operation
tform shape Transform basis functions from reference space to physical space.
tform dshape Transform derivatives of basis functions to physical space.

dshape dot dshape Computes
∫

Ω∇v · ∇u dX.
shape shape Computes

∫
Ω vu dX.

mat addto Adds local matrices into a global matrix using the Addto algorithm.

Table 4.2: A subset of kernels in the CUDA kernel library.

The CUDA code generated by this compiler for the Poisson problem produces identical results
to a handwritten CUDA implementation, as well as a CPU implementation of the same problem.
Although the generated code executes faster than the CPU implementation for large meshes, we
do not investigate its performance as there is only a limited speed improvement that can be gained
for steady-state problems.

4.5.1 Further UFL Compiler Development

Although the prototype compiler demonstrates the feasibility of generating CUDA code from
UFL sources, the requirement for a library of handwritten CUDA kernels limits its output to a
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pre-defined set of forms optimised by hand. Here we describe an intermediate phase that low-
ers the UFL representation to one amenable to optimisation with established techniques before
being used to generate CUDA kernels. Consider one term from the weak form of the Helmholtz
equation [Karniadakis and Sherwin, 1999]:∫

Ω
∇v · ∇u + λvu dX (4.1)

There are several combinations of kernels that implement the local assembly phase of this
term that can be implemented. We can enumerate these possibilities by building an Intermediate
Representation (IR) that provides a high-level semantic representation of each term. Sub-terms of
the intermediate representation are determined by working bottom-up from leaf nodes to identify
the smallest set of nodes that describes the assembly of a local matrix. Higher sub-terms are
identified as the addition or scalar multiplication of lower-sub terms.

The IR for Equation 4.1 is shown in Figure 4.6. As there are four sub-terms, up to four sepa-
rate kernels may perform local assembly for this term. Using more kernels increases the memory
bandwidth requirements; however, larger kernels require more resources, decreasing the total
parallelism [Filipovic et al., 2009a]. Instead of building a performance model to evaluate each can-
didate implementation, a pragmatic approach is to lower this representation to one that can be
optimised using existing techniques.

Each of the nodes at the root of the sub-terms may be lowered to a loop over a certain index.
For example, the sum node corresponds to a loop over the elements that sums the local matri-
ces produced by the lower sub-terms. The generated loop nest can be optimised using standard
techniques, for example in the polyhedral model [Pouchet et al., 2007] or the Æcute framework
[Howes et al., 2009].

dX

sum

dot scalarproduct

grad grad λ outerproduct

v u v u

Figure 4.6: Intermediate Representation of the term
∫

Ω∇v ·∇u+λvu dX. Sub-terms are indicated
by dotted outlines.

4.6 Conclusions

The experimental results that have been presented have shown that the Local Matrix Approach
gives superior performance compared to the Addto algorithm when implementing the finite el-
ement method on a GPU in 2D using order-1 basis functions. We have also seen that changes in
the data format and the structure of the assembly loop are necessary. All of these changes are
represented by the same UFL source code, and a compiler is free to make choices about each of
these aspects.

We have also discussed the implementation of a prototype UFL compiler that generates code
reliant on a library of hand-written local matrix assembly kernels. Since we have found that this
is not an efficient approach, current work is based upon reimplementing this compiler so that
it generates kernels based on specific forms that are in the UFL source. A suitable intermediate
representation has been outlined. It is expected that this representation will allow the generation
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of different implementations that have been produced using polyhedral transformations, or other
optimisations. The work on this compiler and the results that are expected to be produced are
outlined in the following chapter.
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Chapter 5

Research Plan

5.1 Introduction

This chapter maps out the work that needs to be done before the completion of the PhD. The work
can be broken into several distinct chunks, some of which are independent. Figure 5.1 shows
how these tasks are broken down and the periods in which they will be completed. It is expected
that publications should result from the work that is completed. Several possible publications
are mapped out on the timeline. It is not expected that each of these potential publications will
develop into a full submission - it is possible that some will be amalgamated, depending on the
value of the contribution that is derived from the work on which the publications are based.

5.2 Work Items

1 - MCFC Development. The work towards producing a form compiler that inputs UFL sources
and generates CUDA code that integrates with Fluidity is to be completed. This compiler
is referred to as the ManyCore Form Compiler, or MCFC. In order to complete this, a code
generator that produces CUDA kernels that compute individual forms from a UFL source
must be produced. A second portion of the compiler will generate code that calls these ker-
nels in the correct order with the correct parameters, and handles flow control (for example,
for timestepping). A final portion of the code generation will produce code that extracts the
required data from Fluidity’s data structures and marshals it onto the GPU.

UFL code that solves Poisson’s Equation and an advection-diffusion problem will be gener-
ated first, to aid in debugging. An implementation of a shallow-water equations [Wesseling, 2001]
solver will then be produced, and its output validated by comparing it to the output of a
shallow-water solver that is part of Fluidity.

2 - MCFC Performance Optimisations. Potential performance optimisations that are identified
in the literature review are to be implemented. These include:

• Generating kernels that contain a number of fused operations. This idea is based on the
decomposition-fusion scheme identified in Section 3.3.3.
• Adding code that loads small partitions of the mesh into shared memory to local matrix

assembly kernels.
• Further algebraic transformations may be incorporated, such as the evaluation by ten-

sor representation described in Section 3.5.2.

3 - OpenCL Investigation. Following the work of a UROP student over the summer of 2010, an
MCFC backend that generates OpenCL code instead of CUDA code will be developed. This
will allow the generated code to be run on most multicore and manycore architectures. Since
the performance characteristics of these architectures are very different, this will allow fur-
ther experimentation to find the choices of optimisations/transformations that best suit a
particular target architecture.
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Figure 5.1: Timeline showing tasks until the completion of the PhD.
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4 - Algebraic Transformations. Similarly to the SPIRAL project, it is expected that the Finite Ele-
ment Method may be represented as a set of algebraic operations that may be transformed
by a set of rules, to generate a whole space of possible implementations. It is expected that
the optimal choice of transformations is different for each architecture, and it is hoped that it
is possible to develop methods to guide the transformations with a knowledge of the target
architecture.

5 - Fluidity Integration. Since one of the main goals of this project is to provide tools for automat-
ically generating code to the users/developers of Fluidity, it is necessary to consider how the
generated code integrates into Fluidity on a large scale. This work unit will involve experi-
menting with integrating generated code into the main Fluidity codebase. Due to the size of
Fluidity and the various non-finite element operations that it performs (such as mesh adap-
tivity). It is expected that issues will arise in managing data placement and ensuring that
data freshness is maintained across different architectures. Accordingly, a large proportion
of time has been set aside to overcome these issues whilst still maintaining performance.

6 - Navier Stokes. Since the motion of fluids is generally described by the Navier-Stokes equa-
tions [Wesseling, 2001], and form a large part of the numerical computations in Fluidity, it is
important to work towards the generation of a solver for these equations from UFL sources.
In order to achieve this, MCFC must be extended to generate code for Picard iteration, in
order to compute the nonlinear term.

7 - Writing Up. The thesis will be finalised at this stage. Further experiments that are required to
complete the research may also be run at this stage.

8 - Fluidity Deployment. The tools for generating code will be passed on to the developers of
Fluidity, and used to integrate generated code that assembles a large portion of the systems
that are solved in Fluidity. This will include the implementation of terms such as gravity,
buoyancy, surface tension, viscous, coriolis geostrophic pressure etc. It is hoped that there
will be two-way communication with developers, leading to improvements in MCFC as well
as bugfixes and usability improvements. The experiences from this work item will also be
integrated into the thesis in Work Item 7.

5.3 Potential Publications

1. This publication is based upon the work completed in Work Item 1. The expected contri-
bution includes a description of the implementation of MCFC. This is novel since there are
currently no compilers for UFL that generate CUDA code, and because the issues arising
from the implementation are non-trivial. It is expected that some code-generation choices
will be embedded into MCFC, including the choice of either the Local Matrix Approach or
the Addto algorithm. Performance results for each of the implementations may be compared
in the publication.

2. This publication is based upon the work in Work Items 2 and 4, and possibly 3. The contribu-
tion will be the presentation of the algorithms for performing algebraic transformations on
finite element implementations, and a discussion of the rules contained within the rulebase.
Performance results for various architectures that demonstrate how the choice of transfor-
mations affects the performance will be presented.

3. This publication is based upon the Work Item 5. The contribution will be based around the
work needed to integrate generated code into Fluidity, in particular the techniques required
to maintain consistency of data across different nodes and architectures, whilst maintaining
performance by transferring data efficiently.

4. This publication is based on Work Item 6, and will discuss the implementation and perfor-
mance of the Navier-Stokes solver on CPU and GPU architectures. It is expected that part
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of the contribution will describe the efficient implementation of boundary conditions on
manycore architectures.

5. This publication is based on all the Work Items, and is expected to be an article summaris-
ing the state of the research, and in particular drawing attention to the large-scale models
that are able to be simulated with generated code, as well as the improvement in software
development that is brought about by the use of a high-level language for development.

6. Another publication that can be developed relatively independently of the other work in the
timeline involves determining the grammar for UFL, and assigning a semantics and type
system to the constructs generated by this grammar. This will provide a contribution to the
community, since there is presently no formal definition of UFL.

5.4 Conclusions

The research that has been completed so far has laid the foundations for the development of tools
for generating high-performance finite elements solvers on manycore architectures. The eventual
goal of this research is to provide these tools to users that will benefit from them, both in terms of
ease of development and the performance of the resulting code.

The long-term goal (beyond the scope of this PhD) is to rewrite a large portion of Fluidity
using UFL. The result of this work will be a portable and maintainable high-performance code
that allows aggressive exploitation of future architectures.
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